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PREFACE

The increasing interest in the dynamic behaviour of structures in the last couple of
decades, has resulted in a proliferation of literature, dealing with what in contempo-
rary language is termed Modal Analysis Techniques. Whilst the dynamic behaviour of
a structure is described by analysts in terms of differential equations relating elemen-
tal masses and stiffnesses, it can equally well be described by its natural frequencies,
principal modes etc. which are modal parameters measurable by the experimentalist.
These techniques therefore, not only provide a tool for the analytical description of a
structure, but also serve as a common technical language between the analyst and the
experimental engineer. Obviously their mutual collaboration is of vital importance,
since the accurate measurement of the principal modes of a structure, is a prerequi-
site for providing data to validate and improve analytical methods, and to verify the
dynamic design adequacy of the structure.

This book has therefore been divided into two parts, Theory and Experimental Meth-
ods, each with its own introduction (Chapters 1 and 4). However, some overlap is
unavoidable, as post-processing of experimental data for automatic Force Appropria-
tion techniques demands mathematical manipulation and interpretation. The main
objective is to describe techniques for testing large structures, using multiple exciters
to obtain several columns of the frequency response function matrix, and for modal
tuning methods to improve the modal parameter estimates. The theoretical chapters
have been developed with this in mind, to guide the reader through the basics of
modal analysis, and lead to Characteristic Phase Lag Theory — the essence of modal
tuning procedures.

The theoretical part starts with Chapter 2, in which a single degree of freedom system
is used to introduce viscous and hysteretic (also called structural) damping. To
illustrate the differences in the responses, they are plotted as total amplitude and
phase against frequency, as real and imaginary part against frequency, and as Nyquist
plots.

In Chapter 3, matrix analysis methods are used on a simple two degree of freedom
system to illustrate the concept of Eigenvalues and Eigenvectors and their orthogonal
properties, generalized mass and stiffness, normalization of mode shapes, and
Principal Coordinates. Since matrix methods expedite the transition to the analysis of
multiple degree of freedom systems, they are used widely throughout the book.
Readers unfamiliar with these techniques are therefore strongly recommended to
start with Appendices A and B, which are by no means extensive, but comprehensive
enough to facilitate understanding of the main text. The response of forced damped
vibration is then dealt with in two sections; one for systems having proportional
damping and the other for non-proportionally damped systems. Large structures
invariably fall into the latter category, and their response can be obtained using
Characteristic Phase Lag Theory, which is described in some depth. To give physical
meaning to the above mathematical concepts, each of the sections are clarified by
numerical examples.



The experimental part starts with Chapter 5, where the Peak Amplitude and Kennedy
and Pancu methods are described, which make use of single exciters to obtain the
modal parameters. The limitations of these techniques are pointed out, and sections
in this chapter are devoted to emphasizing the problems encountered because of
“Close Resonances” and “Contribution from Off-Resonant Modes” — factors which
introduce inaccuracies in modal parameter estimates.

Chapter 6 describes the instrumentation necessary for exciting a structure, and for
data acquisition and analysis using multiple exciters. Conventional force appropria-
tion techniques (used even today), in which iterative adjustment of forces is carried
out manually, are described, together with practical hints and pitfalls to be avoided.

In Chapter 7 Automatic Force Appropriation techniques are described, with particular
emphasis on Asher’s method. Using his method, the force ratios necessary for tuning
the principal modes of vibration can be calculated from the complex admittance
matrix, the columns of which are measured experimentally using sinusoidal excitation.
By plotting the Nyquist diagrams for narrow band sweeps around the resonance
frequencies using the force ratios calculated, the modal parameters can be extracted.

With the advent of dual channel real time analyzers and fast data acquisition equip-
ment, it is now possible to measure a single column or row of a frequency response
function (FRF) matrix, using wide band random or transient signal excitation. By curve
fitting this data, the rest of the FRF matrix can be synthesized, assuming linearity, and
modal parameters determined. As abundant literature can be found on this technique,
its basic ideas have only been touched upon here. On the other hand, emphasis has
been placed on complementing this technique with Asher’s method. Implementation of
his method however, requires measurement of several columns of the frequency
response function matrix, implying that the structure must be excited at several points
successively, using random excitation, and the response measured at various loca-
tions. The experimentally measured FRFs are curve fitted using the algorithms avail-
able with these techniques, to yield analytically synthesized FRFs. Application of
Asher’s method to these, has several advantages over using the experimentally
measured FRFs which are listed in Chapter 7. Again, narrow band sweeps around the
resonance frequencies with the forces calculated, can be used to refine modal
parameter estimates. To illustrate the effectiveness of Asher’s method, numerical
simulation studies carried out on mathematical models are also included.

Chapter 7 furthermore describes briefly topics under current research — among them
Ibafez’s suggestion of extending Asher’s method using rectangular matrices (number
of response measurement locations greater than the number of excitation positions).
The method of excitation using dual input random signals, as described by Allemang
et al, has also been briefly touched upon. Another promising modal tuning procedure
developed by Ensminger and Turner, called the “Minimum Coincident Response”
method has been included and some examples illustrated.

Finally the author would like to thank Professor W.L. Hallauer Jr. of Virginia Polytech-
nic Institute and State University, USA, and Professor R.R. Craig Jr. of the University
of Texas at Austin, USA, for granting permission to reproduce some of the analytical
and experimental results of their research.

K. Zaveri
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SYMBOL NOTATION

Constant

b Constant

c Damping coefficient

c.  Critical damping

e Base to the Natural Logarithm

f Frequency

fo Undamped natural frequency
VA

k Spring stiffness

! Iﬁ%?’r?égr of response

measurement locations
m  Mass

n Constant
Number of degrees of freedom

p Number of excitation locations
q Number of sets of forces

s Complex frequency

t Time

u; Mode Shape component

w Energy stored in the system

X Displacement

X Velocity

X Acceleration

Aiir Complex residue of r'" mode

E Enerf_;y dissipated per
cycle at resonance

F Force
G;; Autospectrum
Gj; Cross Spectrum

H;;(f) Frequency response function

Im
Ki
M;
Q
Re
X

Imaginary part
Generalized stiffness
Generalized mass
Quality factor

Real part

Displacement amplitude

X;(f) Fourier Transform of input

Y;(f) Fourier Transform of output

Constant
Angle

Constant
Structural shysteretic)
damping factor
Square root of
Coherence Function
Logarithmic Decrement
Dimensionless damping ratio
Loss factor
Principal coordinate
Phase angle

Roots of characteristic
equation (eigenvalue)

Constant
Decay rate of r'™ mode
Angular frequency

Angular undamped
natural frequency

Damped natural frequency
of r"mode

Test natural frequency
Difference

Summation



MATRIX NOTATION

[c] Damping matrix [ﬁ] Rectangular complex frequency
response function matrix
[c(w)] Combined viscous and

hysteretic damping matrix [H’] Real part of [H]
[d] Hysteretic damping matrix [ﬁ”] Imaginary part of [ﬁ]
[k] Stiffness matrix LH” (i row of [H"]
[m] Mass matrix [I] Identity matrix
{u} Principal mode shape vector [K] Diagonalized stiffness matrix
{u} Complex displacement vector [M] Diagonalized mass matrix
{x} Displacement vector {U* Complex displacement

amplitude vector
[U] Matrix whose columns are {U,}

[A] System Matrix {X} Fourier Transformed
— input vector

[A] Complex stiffness matrix —
_ {Y} Fourier Transformed
[B] Complex admittance matrix output vector

[B'] Real part of [B]
[B”] Imaginary part of [B]

_ {n} Principal coordinate vector
[B+] Incomplete complex

admittance matrix {¢} Principal mode shape vector
(B’x] Real part of [B,] [#] Modal matrix
[B",] Imaginary part of [_B*] (8] Weighted modal matrix
[E*] Incomplete, Rectangular, {y} Characteristic phase-lag
complex admittance matrix mode shape
[E’*] Real part of [E*] {I'} Tuning force amplitude vector
[B”,] Imaginary part of [B,] {T'+} Incomplete tuning force

. amplitude vector
[C] Diagonalized damping matrix
[A] Diagonal matrix with diagonal
{F} Exciting force vector terms equal to the eigenvalues

{F.} Incomplete exciting
force vector

[F] Matrix whose columns are {F,}

[H] Complex frequency response
function matrix

[H'] Real part of [H]
[H”] Imaginary part of [H]



THEORY
1. INTRODUCTION

The study of the motion of physical systems resulting from the forces acting on them,
is referred to as dynamics — the realm of Newton’s Laws. One type of dynamic
behaviour of physical systems is vibratory motion, in which the system oscillates
about a certain equilibrium position. This motion is rendered possible by the ability of
materials used in the construction of systems to store potential energy via their elastic
properties.

Most physical systems are continuous in character and their parameters are distribut-
ed. In many cases the distributed parameters can be replaced by discrete ones by
suitable lumping of the continuous system. This should be carried out whenever
possible, since lumped parameter systems are described by ordinary differential
equations, which are far easier to solve than the partial differential equations describ-
ing continuous systems. Having accomplished this, the number of degrees of free-
dom can be established, specifying the number of independent coordinates necessary
to define the system.

Oscillatory systems can be classified into two groups according to their behaviour,
namely linear and non-linear. For a linear system, the principle of superposition
applies, and the dependent variables in the differential equations describing the
system appear to the first power only, and also without their cross products. Although
only linear systems are dealt with here, some knowledge of non-linear systems is
desirable, since all systems tend to become non-linear with increasing amplitudes of
oscillation.

The number of degrees of freedom chosen dictates the number of differential equa-
tions necessary to characterize the system. As these equations are normally coupled
to each other, they must be decoupled before their solution is attempted. To do this,
the orthogonal properties of the Principal Modes are exploited, enabling the original
differential equations to be rewritten in terms of the Principal Coordinates.

A physical system generally exhibits two classes of vibration — free and forced. Free
vibration takes place when a system oscillates under the action of forces inherent in
the system itself, and when the external forces are absent. (It is described by the
solution of differential equations with their right hand sides set to zero). The system
when given an initial disturbance will vibrate at one or more of its natural frequencies,
which are properties of the dynamical system determined by its mass and stiffness
distribution. The resulting motion will be the sum of the Principal Modes in some
proportion, and will continue ad infinitum in the absence of damping. Thus the
mathematical study of free vibration yields information about the dynamic properties
of the system, relevant for evaluating the response of the system under forced
vibration.

Forced Vibration takes place when a system oscillates under the action of external
forces. When the excitation force is oscillatory, the system is forced to vibrate at the
excitation frequency. If the frequency of excitation coincides with one of the natural
frequencies, resonance is encountered, a phenomenon in which the amplitude builds
up to dangerously high levels, limited only by the degree of damping.



All physical systems are subject to one or other type of damping, since energy is
dissipated through friction and other resistances. These resistances appear in various
forms, after which they are named - viscous, hysteretic, Coulomb, aerodynamic etc.
The properties of the damping mechanisms differ from each other, and not all of them
are equally amenable to mathematical formulation. Fortunately, small amounts of
damping have very little influence on the natural frequencies, which are therefore
normally calculated assuming no damping, as are the principal modes of vibration
associated with each of these natural frequencies. However, in calculating the re-
sponse under forced vibration, not only is it necessary to make assumptions about the
type of damping, but also the distribution of damping — proportional or non-propor-
tional. This is because the latter type of distribution, generally encountered in
complex structures, is considerably more difficult to resolve mathematically, giving
what is called complex modes, in contrast to real modes obtained with proportional
damping.



2. SINGLE DEGREE OF FREEDOM SYSTEM

2.1. VISCOUS DAMPING

A complex structure can be considered as a number of masses, interconnected by
springs and damping elements to facilitate the analytical solution of the dynamic
behaviour of the structure. Since the damping forces in a real structure cannot be
estimated with anything like the same accuracy as the elastic and inertia forces, a
rigorous mathematical simulation of the damping effects is futile. Nevertheless, to
account for the dissipative forces in the structure, assumptions of the form of damp-
ing have to be made, that give as good as possible an estimate of the damping forces
in practice. Furthermore, the form has to be conducive to easy mathematical manipu-
lation, specifically adaptable to linear equations of motion — implying that the damping
forces are harmonic when the excitation is harmonic. Two such suitable forms of
damping are viscous and hysteretic and are treated in some depth in Ref. [17-19]. The
response of a single degree of freedom system to viscous damping will be described
in this section and to hysteretic damping in the next section. Differences in the
responses will also be illustrated.

2 I x(t)
k
T —
F(t)
m -
=
: (OO

810483

Fig.1. Single degree of freedom system

Fig.1 shows a single degree of freedom system, where a massless dashpot of damp-
ing coefficient ¢ and a spring of stiffness k are mounted between the mass m and the
fixed wall. The dashpot exerts a damping force —cx which is proportional to the
instantaneous velocity and is positive in the positive direction of x. The Complex
Frequency solution for free damped vibration of such a system is given in Appendix
C. The equation of motion for forced harmonic excitation may be written as

mX + cX + kx = Felwt (1)

where x is the displacement

x is the velocity

is the acceleration

is the excitation force
is =1

is the excitation frequency.

£ — mx:x

and
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Dividing equation (1) by m and multiplying the numerator and denominator on the right
hand side by k we obtain

.. . F\ .
X+ 28wox + w02x= woz <T>elwt 2)
where w, = \/% undamped natural frequency,
c c
¢ = = — dimensionless damping ratio,
2mwg  C

c. critical damping and

~|m

extension in the spring caused by F alone.

Using a trial solution of the form
x = Xelwt

for steady state vibration, it can be shown by differentiation and substitution in
equation (2) that

we? F/k F/k
X = 5 5 = 5 (3)
We? — w2+ ww, 1 — (w/wg)* +j28w/wg
Thus
. 1 Feliwt
X = Xelwt = - 4
© I1 — (wlwg)? + j2§w/wol k “)

It can be seen that the displacement x is proportional to the applied force, the
proportionality factor being

H(w) = [ 1 ] ®)

1 — (w/wg)? +j2tw/w,

which is known as the complex frequency response. Eq. (4) illustrates that the
displacement is a complex quantity which can therefore be broken up into its real and
imaginary parts by multiplying the numerator and the denominator of the square
brackets by its complex conjugate. Thus

1 — (w/wy)? j2tw/w Felwt
X = 513 - 2 - (6)
(1= (w/we)?} 2+ (Rwlwe)2  {1- (w/wg)2} 2 + (2 w/wy)? | k
This shows that the displacement has one component
_ 1 — (w/w,)? Felwt
Re(x) I 1= (w/w,)? 12+ (2§w/wo)2] Kk (7N
which is in-phase with the applied force and another component
— 2tw/w F elwt
| = ° =
mix) [ {1 (w/we)? |2+ (2w/w,)? ] k ®)

which has a phase lag of 90° behind the applied force. This component is said to be in
quadrature with the excitation.



Im({x)

0N 1 — (w/w,)? Feiwt Re(x)
11— (wlewg)2} 2 + (2t wlw,)?

k

810482

Fig.2. Real and Imaginary Components of displacement relative to the force vector

In Fig.2 the vectors OA and OB show the real and imaginary components of the
displacement respectively in the Argand plane. The vector OC is the total displace-
ment, the amplitude of which is given by{ Re2(X)+|m2(x)}

i.e. 1 ]_F e jwt
V{1 = (w/we)? 12 + (2 w/we)? | K .
(

The total displacement lags behind the force vector by an angle 6 given by
{tan-! Im(x)/Re(x)}

ie. 6 = tan~! (10)
The steady state solution of eq. 2 can therefore also be written in the form
1 F ei((«)t — 0)
X = -
I\/{1 —(w/we)?} 2 + (2§w/w0)2] k
where ¢ is given by eq. (10).

(11)

The quantity in the square brackets of eq. (11) is the absolute value of the complex fre-
quency response, |H(w)|, see egs. (4 & 5). It is called the magnification factor and is a
dimensionless ratio between the amplitude of displacement X and the static displace-
ment F/k.

11
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Phase Angle 0

4

w/wg

811157

Fig.3.a) Magnification factor |H (w)[ as a function of the dimensionless frequency ratio
w/wg for various values of the damping ratio
b) Phase lag of displacement behind force as a function of w/wg for various
values of {

Fig.3a shows the absolute value of the complex frequency response function |H(w)| as
a function of the dimensioniess frequency ratio w/wq for various values of the damping
ratio (. It can be seen that increasing damping ratio { tends to diminish the amplitudes
and to shift the peaks to the left of the vertical through w/wg = 1. The peaks occur at
frequencies given by

w = wy V(1T =22 (12)
where the peak value of |H(w)| is given by
1
H =
[H(w)] TNEET
For light damping (¢ < 0,05) the curves are nearly symmetric about the vertical

through w/wq= 1. The peak value of |H(w)| occurs in the immediate vicinity of w/wg= 1
and is given by

(13)
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%
where Q is known as the quality factor.

IH(w)l =— =Q (14)

For the curve of { = 0,1 for example, the points P1 and P, where the amplitude of [H(w)|
reduces to Q/V2 of its peak value are called the half power points.(If the ordinate is
plotted on a logarithmic scale, P1 and P, are points where the amplitude of |H(w)|
reduces by 3 dB and are thus called the -3 dB points). The difference in the frequen-
cies of points Py and P» is called the 3 dB bandwidth of the system, and for light
damping it can be shown that

Aw = wy —wqp = 2w, (15)
where Aw is the 3 dB bandwidth
w, is the frequency at point P4
wois the frequency at point Py
From egs. (14) and (15) we obtain
W — Wy _ 2 c _

(4)0 Ce
where 7 is called the Loss Factor.

=1 (16)

o] -

Fig.3b shows curves of phase angle 6 against w/wgfor various values of { plotted from
eq. (10). It should be noted that all curves pass through the point 6 = 7/2, w/wg = 1; in
other words, no matter what the damping is, the phase angle between force and
displacement at the undamped natural frequency w/=wq is 90°. Moreover, the phase
angle tends to zero for w/wy —0 and to 180° for w/wgy— oo.

To examine the variation of the in-phase Re(x) and quadrature Im(x) components of
displacement, eqgs. (7 & 8) are plotted as a function of w/wg in Figs.4a and 4b
respectively. The curves of the real component of displacement in Fig.4a have a zero

value at w/wqy = 1 independent of damping ({), and exhibits a peak and a notch at
frequencies

@@V I-X (17)
and Wy = wqg +/ 1+2¢

respectively.

As the damping decreases ({ gets smaller), the peak and the notch increase in value
and become closer together. In the limit when { = 0, the curve has an asymptote at
w/wg= 1. The frequencies w, and w, are often used to determine the damping of the

system from the equation

_ (walwy)2 —1
(wz/w1 )2 +1

The curves of the imaginary component of displacement have a notch in close vicinity

of w/wg = 1 and they are sharper than those of |H(w)| in Fig.3a for corresponding
values of ¢.

n=2 (18)

13
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2F/k [~

F/k

0 I G
w/we
—F/k -
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810488
Im(x)
|
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\ w/wg
|
$=03
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L
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I
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Fig.4.a) Real component of displacement as a function of the dimensionless frequency
ratio w/w for various values of {
b) Imaginary component of displacement against w/wg for various values of {
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-\

w/wg

840130

\

Fig.5. Three dimensional plot of real and imaginary components of displacement
against frequency

If the real component, imaginary component and frequency ratio are plotted on three
mutually perpendicular axes, the three dimensional curve obtained is that shown in
Fig.5. The dashed line represents the curve for { = 0 and lies wholly in the plane
{Re(x),w}. The curves of Fig.4a and 4b are in fact the projections of curves similar to
that of Fig.5 in the {Re(x),w} and {Im(x),w} planes respectively. The third projection of
the curve in the {Re(x), Im(x)} plane would look like the curves shown in Fig.6.

Im(x)

A
—2F/k —F/k 0 F/k 2F/k 3F/k

Re(x)

L —4F/k

Acreasing

Frequency
r —5F/k

810485

Fig.6. Complex plot of Real component against Imaginary component of displace-
ment as the frequency is varied for various values of {

15
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The right hand side of egs. (7 & 8) are plotted on the X and Y axes of Fig.6
respectively, for varying values of w/wq. The two curves are for { = 0,1 and { = 0,3.
These curves could also have been obtained by plotting the total displacement given
by expression (9) from the origin 0 at an angle § from the Re(x) axis given by eq. (10).
Thus the curve in Fig.6 is the locus in the Argand plane of the end of the line
representing the total displacement for a particular {, as the frequency ratio w/wg is
varied. It can be seen again in Fig.6 that no matter what the damping is, at the
undamped natural frequency w/wy = 1 the real component is zero, or in other words,
the phase angle between the force and the total displacement is 90°.

2.2. HYSTERETIC (STRUCTURAL) DAMPING

Another type of damping which permits setting up of linear damping equation, and
which may often give a closer approximation to the damping process in practice, is the
hysteretic damping, sometimes called structural damping. A large variety of materials,
when subjected to cyclic stress (for strains below the elastic limit), exhibit a stress-
strain relationship which is characterised by a hysteresis loop. The energy dissipated
per cycle due to internal friction in the material is proportional to the area within the
hysteresis loop, and hence the name hysteretic damping. It has been found [20] that the
internal friction is independent of the rate of strain (independent of frequency) and over
a significant frequency range is proportional to the displacement. Thus the damping
force is proportional to the elastic force but, since energy is dissipated, it must be in
phase with the velocity (in quadrature with displacement).

Thus for simple harmonic motion the damping force is given by
fykx = vk — (19)
w

where v is called the structural damping factor. The equation of motion for a single
degree of freedom system with structural damping can thus be written

k X
m¥ + 1(-55(+kx=Fe!wt (20)
or m& + k(1 + jy)x = Feiwt 1)

where k(1 +jy) is called the complex stiffness.
The steady state solution of eq. (21) is given by

- Xeiwt = ! F et 22)
x=ne 1 — (wlwg)? + 7| k

corresponding to eq. (4) for viscous damping.

By multiplying the numerator and the denominator of the square brackets by its
complex conjugate, the real and the imaginary components of the displacement can
be obtained:

1 — (w/wg)? v F e jwt 23)
T S g2 A0 = (w2 + 2 |k
1 — (w/wg)? ] Feiwt

Th Re(x) = - 24

us o | {1 — (w/w0)2}2 +92 ] k (24
7 jowt
and Imix) = , Fe (25)
L {1- (w/wg)2} + 42 | k



The total displacement is given by

1

Fei‘*’t
\/{1 — (o.;/ooo)z}2 + 42 ]k

which lags behind the force vector by an angle 6 given by

6 = tan—! [ i

1 — (w/wg)? ]

|
|
I

=
02
1

H{w)| / ‘ \
3 |
|

Phase Angle 6
3
N

vllllll!YT)l/[/

i/

0 1 2 3

(b}

Fig.7.a) Magnification factor as a function of w/wq for various values of the structural

damping factor y

w/wg

810486

(26)

(27)

b) Phase lag of displacement behind force as a function of wlwq for various

values of v

The term in the square brackets of expression (26) (magnification factor) and 6 are
plotted against w/wg for various values of « in Figs.7a and 7b respectively. The curves
of Figs.7a and 7b can be seen to be similar to those of Figs.3a and 3b respectively for
viscous damping; however, there are some minor differences. For hysteretic damping
it can be seen from Fig.7a that the maximum response occurs exactly at w/=wg = 1 in-
dependent of damping vy. At very low values of w/wg the response for hysteretic
damping depends on v and the phase angle 9 (Fig.7b) tends to tan—'y whereas it is

zero for viscous damping.
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—3F/k —2F/k —F/k 0 F/k 2F/k 3F/k
1 1 1 L 1 1

Re(x)

w/wy =1
+—-2F/k

+—3F/k

—4F/k

Increasing
Frequency

wlwy =1

810487

Fig.8. Complex plot of Real component against imaginary component of displace-
ment as the frequency is varied for various values of y

Fig.8 shows the complex plot (vector plot, polar plot, co-quad plot, Nyquist plot)
obtained by plotting the right hand side of egs. 24 and 25 in the Argand plane for values
of v = 0,2 and v = 0,6. The two curves are seen to be completely symmetrical about the
imaginary axis, except near the origin. At w/wg= 1 the real component is zero and the
imaginary component is maximum.



3. MULTI-DEGREE OF FREEDOM SYSTEMS

In the previous sections a single degree of freedom system with a single mass,
damper and spring was considered. Real structures have muiltiple degrees of freedom
and their analysis is complicated by the large number of equations involved. To deal
with them matrix methods are ideal, in that large arrays of equations can be manipu-
lated in short-hand notation. Thus the reader unfamiliar with matrix methods is
referred to Appendices A and B which should facilitate understanding of the following
sections. To develop some of the concepts used in vibration theory in matrix form, a
two degree of freedom system shown in Fig.9 will be used. Numerical examples will
further elucidate these concepts which form the basis for the treatment and under-
standing of the dynamical behaviour of large systems.

Fq F2
kq I_> k- [_> k3

2

—\WW— ——WW—n

my m2

01

1 €2 €3
’—b X1 I—-V X2

Fig.9. Two degree of freedom system

811478

3.1. FREE VIBRATION
3.1.1. Eigenvalues and Eigenvectors
The equations of motion of the system shown in Fig.9 are
miXy  +(cq +eplx —CaXy  +lkq +ka)x; —kaxg = F

moX 2 —CcoX1  Hep +ez)x) —kox4 ko +k3lxp = Fp
which can be written in matrix form as

my 0 cq tcy —Co ).(1 k-] + k2 —k2 X1 F1
+ [ ] [ ] + [ (29)
0 m —C2 ca ezl [xp —ka ko +k3zd [xz Fa

To determine the natural frequencies and natural mode shapes of the system, the
undamped free vibration of the system is first considered. Thus the equations reduce
to

X

X2

-m1 0
[m]{X} +[k]l{x} =0 where [m] = ] (30)
_.0 mo
-k1 + k2 —kz]
and [k] =
| —ko ko + k3
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Assuming harmonic motion x; = -\; x; where A\ = w2eq. (30) becomes
—A[m]{x} +[k]{x} =0

or [-X[m]+ (k] {u} =0 where {u} = {x} (31)

Premultiplying eq. (31) by [m]~! and rearranging we obtain

[(m='k] —A0] {u}=0 (32)
where [m]~'[k] is called a dynamic matrix
and [m]~'[m] = [I] is a unit matrix, see Appendices A and B.

Eqg. (32) is a set of simultaneous algebraic equations in u;. From the theory of
equations it is known, that for a non-trivial solution {u} = 0, the determinant of the
coefficients of eq. (32) must be zero. Thus

|im=" (k] —a0[=0 (33)

which is known as the characteristic equation of the system. Eq. (33) when expanded
can be rewritten as

A"+ a, A" 327\n_2 F o a, =0 (34)

which is a polynomial in A for an n degree of freedom system. The roots ), of the
characteristic equation are called eigenvalues and the undamped natural frequencies
of the system are determined from the relationship

)\i = wi2 (35)

By substituting A; into matrix equation (32) we obtain the corresponding natural (or
Principal) mode shape {u;} which is also called an eigenvector. The us represent a
deformation pattern of the structure for the corresponding natural frequency. As
equations (32) are homogeneous, there is not a unique solution for the us, and we can
only obtain a ratio among the us. Thus the natural mode shape is defined by the ratio of
the amplitudes of motion at the various points on the structure when excited at its
natural frequency. The actual amplitude on the other hand depends on the initial
conditions and the position and magnitude of the exciting forces.

Consider a numerical example for the system shown in Fig.9 where
my =5kg; mea=10kg; ki = ks = 2N/m; ks = 4N/m
Substituting in eq. (29) we get
5 0] [x; 4 -2 X1 0
+ =
0 10 3&2 -2 6 X2 0

Thus eq. (32) becomes

(36)




[1/5 o] [4 —2} [1 o] uy 0
_—x =
0 1/10] -2 6 0 1 usp 0

[4/5 -\ —2/5:'
—1/5 3/5 —\

For a non-trivial solution the determinant of the above equation must equal zero, thus

uq

|
(37)

us

(4/5 — ) (8/5 — \) — (=1/5) (-2/5) = 0

i.e. A2 — —7—)\ + 2. 0  (characteristic equation)

5 5

The roots of the above equation are

7/5 +\/49/25-8/5 _ 1 1 [9
25

M2 = 2 10 = 2

Thus A1 = 2/56 and A2 = 1 and the two natural frequencies are given by
(4)1=\/}\ =\/2/5 andw2=\/)\2=1

Substitution of A1 and A2 in turn in eq. (37) will give the two natural mode shapes. Thus
the mode shape for A\q is given by

[4/5 —-2/5 —2/5} IU1I ’ 0
—1/5 3/6 -2/5] |u, 0

%u1—%u2 =0
i.e. uUjg=up

where uq is arbitrary

u
Thus the mode shape for the natural frequency w1 is { ¢1} = ‘ u1

1
Similarly the mode shape for A2 is given by

U1 ]

us

[4/5 -1 —2/5]
-1/5 3/5 —1

u
Thus the mode shape for the natural frequency wp is {¢s} = ‘ u1/2l
—uy

For an arbitrary deflection of uy = 1 the two mode shapes would be

{¢1} = {:} for w, =+/2/6

and {¢2}=t_11/2} for wp=1
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For wy = /2/5 rad/s the masses move in phase

uq

Ve
,/ \\j

7
\\‘—, \/\

l«——6,35—»

811479

Fig.10. Frequency and mode shapes for the two degree of freedom system

The system can thus vibrate freely with simple harmonic motion when started in the
correct way at one of two possible frequencies as shown in Fig.10. Note that the
masses move either in phase or 180° out of phase with each other. Since the
masses reach their maximum displacements simultaneously, the nodal points are
clearly defined.

3.1.2. Eigenvectors from adjoint of system matrix

Another way of determining the eigenvectors is through the use of the adjoint matrix
of the system. In eq. (32) let

[(m1=T1k] — 0] = [A] (38)

It has been shown in Appendix B that

~

(A]7T = [I—/;]—l where[A]is the adjoint of [Al (39)

Premultiplying the above equation by |A|[A] we obtain
|A| 111 = [A]IA] (40)
or in terms of the original expression for [A] we get
|[tml=10< = 01] 10 = [imI="ikl =2 1] [A] (41)

If now A = \; a root of the characteristic equation (an eigenvalue) the determinant on the
left hand side becomes zero and eq.(41) reduces to

i.e. 0 = [(mI="[k] =¥ (1] adj [[m}="k] —X; (1] (42)

Eq. (42) is valid for all \j and represents the n equations for the n degrees of freedom
system. By comparing equations (32) and (42) it can be seen that the adjoint matrix,
adj. [[m]‘1[k] - )\i[I]] must consist of columns, each of which is proportional to the i th
eigenvector {u;} (i th mode shape for X\).



For the numerical example considered, the system matrix [A] is given in eq. (37)
4/5 —\ —-2/5
i.e. [A] =
—1/5 3/5 =\

For the first mode A\ = % we get

[A(7\1 )] = [

2/5 -2/5:l
—-1/5 1/5

The adjoint of [A(A;)] is given by

1/56  2/5
adj[A(\)] =

1/5 2/5

Thus both the columns of the systems adjoint matrix are proportional to the first mode
shape.

Similarly for the second mode \» = 1 the system matrix is
4/5 —1 —2/5 —-1/5 —2/5
(Ay)] = =
—1/5 3/5 —1 —1/5 -2/5
The adjoint of [A()\,)] is given by

—2/5  2/5
adj [A(\,)] =

1/5 -1/5

Both the columns are seen to be proportional to the second mode shape.

3.1.3. Orthogonal Properties of Eigenvectors
It was shown in the previous section that solution of equation (31) yields n eigenvalues
and n corresponding eigenvectors. Thus a particular eigenvalue w; and the eigenvec-
tor {¢i} will satisfy eq. (31);
ie. [kl {oi} = N[ml{g;} (43)

Premultiply eq. (43) by the transpose of another mode shape {¢}}

; T = ) T )

1.e. ot [kl teit = N {51 [m] {¢} (44)
where the superscript T denotes a transpose matrix (see Appendix A).

We now write the equation for the jt" mode and premultiply by the transpose of the ith
mode

ie. (ot TIkI {gjh = NigitT [m] (¢} (45)
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As [m] and [k] are symmetric matrices

{¢1}T (k] {1 = {1 T [K] {¢;} (see Appendix A) (46)
and {gj1T [m] {oih= 1o} T [m]{g;}
Therefore subtracting eq. (45) from eq. (44) we obtain
0= (\—X) {1 T [m] {g;h (47)
If Aj #+ Aj (implying two different natural frequencies)
{¢i}7 [m] (¢} =0 (48)
and from eq. (45) it can be seen that
{91 T [kl {¢;1 = 0 (49)
Equations (48) and (49) define the orthogonality properties of the mode shapes with
respect to the system mass and stiffness matrices respectively. (The concept of

orthogonality of vectors can be illustrated by, for example, the ijk unit vectors for
the three dimensional cartesian coordinate system).

3.1.4. Generalized Mass and Generalized Stiffness

It can be seen that if i = j in eq. (47) then the two modes are not necessarily orthogonal
and eq. (48) is equal to some scalar constant other than zero, e.g. M;

ie. o1 T[m]{o;t = M i=1,23, ...n (50)
and from eq. (45) it follows that
Pe T Ik o) = A\Mj = w2 M; = K; i =1,23...n (51)
M, and K; are called the generalized mass and generalized stiffness respectively.

The numerical values of the mode shapes calculated above will be used to determine
the generalized mass and generalized stiffness. The mode shapes were found to be

{64} = {1} for wy =+/2/56 and  {¢o} = {_11/2} for wy = 1

Substituting {¢1} in eq. (50) we obtain the generalized mass My for the first mode:

11T [5 o]

1 [0 10] (1

ie. (1 1[5 0]
= M

[0 10] (1

(5 10) (1
=|V|1

1

5+ 10 = M,



Similarly substituting {¢ 2} in eq. (50) we obtain

T
1 5 0 1
-1/2 0 10 —-1/2
i.e. (5 —5) 1
= M2
—1/2
5+ 5/2 = M,
"MQ = 15/2

Thus the generalized masses M; and M, for the first and second modes are 15 and
15/2 respectively.

The generalized stiffnesses K; and K, for the first and second modes are

Ki= w12M;= 2/5x15=6 and Ky = wy2My = 1x15/2=15/2

3.1.5. Normalization of Mode Shapes

If one of the elements of the eigenvector { ¢;} is assigned a certain value, the rest of
the (n — 1) elements are also fixed because the ratio between any two elements is
constant. Thus the eigenvector becomes unique in an absolute sense. This process of
adjusting the elements of the natural modes to make their amplitude unique is called
normalization, and the resulting scaled natural modes are called orthonormal modes.
There are several ways to normalize the mode shapes, four of which are tabulated
below;

1) The mode shapes can be normalized such that the generalized mass or modal
mass M; in eq. (50) is set to unity. This method has the advantage that eq. (51)
yields directly the eigenvalues \; and thus the natural frequencies.

2) The largest element of the mode shape is set to unity, which may be convenient for
plotting the mode shape.

3) A particular element of the mode shape is set to unity.
4) The length of the mode vector is set to unity.

The first method of normalization will be illustrated by the numerical example of the
system shown in Fig.9. The mode shapes were shown to be

o] - |1
2' ) {—U1/2

Therefore substitution of {¢¢} in eq. (50) yields

l(i)d:lj” forwy =+/2/5 and for wy = 1

uq T 5 0 Ui
= M] =1
uq 0 10 uq
i.e. (uy u1)[5 o] uy
=1
0 10] lu,

25



26

i.e. (5U1 10U1) U]} =1
uq

5uq2+10u;2 =1 i.e. up =+4/1/15

Thus the normalized mode shape for w, = V2/5 is
¢1 uiq _ v/ 1/15 (52)
uq Vv 1/15
Similarly for {¢2} we get up 1T [5 o0 I Y
‘—u1/2| 0 10 {—u1/2 2

i.e. (5U1 —5U1) uq
[—U1/2’

=1

5uq2 +5uq2/2 =1 iie. u; =+/2/15

Thus the normalized mode shape for w,= 1 is

ERERERA

—uy/2] | =4/2/15/2

It can now be seen that these normalized mode shapes could also have been obtained
by dividing the natural modes by the square root of their respective generalized
masses calculated in the previous section.

i.e. For normalization of the first natural mode

1}=_1__

1 V15

1
VM

and for the second mode

1%

?q

1 1 1
l¢2] VT {—1/2} BNVAE R RY —J/2715 /2

which are the same as calculated in eq. (52) and (53) respectively.

3.2. FORCED VIBRATION
3.2.1. Principal Coordinates (Normal Coordinates)

The equations of motion of the two degree of freedom system shown in Fig.9 without
damping can be written as

my Xq  + (kg +ko) xq —koxo = Fy (54)
my Xo —kyxp tlkyptkzlxg = Fp
or in matrix form by eq. (29) as
mp 07 (X (kq + ko) —ka 7 [* Fq (55)
[0 mz] X2 ' [—kz (ko + ks)] lle i ’ Fz’




In solving the above equations for the response {x} for a particular set of exciting
forces, the major obstacle encountered is the coupling between the equations; i.e. both
coordinates X, and X, occur in each of the equations (54). In equation (55) the coupling is
seen by the fact that while the stiffness matrix is symmetric it is not diagonal (i.e. the
off-diagonal terms are non-zero). This type of coupling is called elastic coupling or
static coupling (non-diagonal stiffness matrix) and occurs for a lumped mass system, if
the coordinates chosen are at each mass point. If the equations of motion had been
written in terms of the extensions of each spring, the stiffness matrix would have been
diagonal but not the mass matrix. This kind of coupling is termed inertial coupling or
dynamic coupling (non-diagonal mass matrix). It is thus seen that the way in which the
equations are coupled depends on the choice of coordinates. If the system of equations
could be uncoupled, so that we obtained diagonal mass and stiffness matrices, then
each equation would be similar to that of a single degree of freedom system, and could
be solved independent of each other. Indeed, the process of deriving the system
response by transforming the equations of motion into an independent set of equations
is known as modal analysis.

Thus the coordinate transformation we are seeking, is one that decouples the system
inertially and elastically simultaneously, and therefore yields us diagonal mass and
stiffness matrices. It is here that the orthogonal properties of the mode shapes
discussed above come into use. It was shown by eq. (50), that if the mass or the
stiffness matrix is post and pre-multiplied by a mode shape and its transpose respec-
tively, the result is some scalar constant. Thus with the use of a matrix [¢] whose
columns are the mode shape vectors, we already have at our disposal the necessary
coordinate transformation. The x coordinates are transformed to n by the equation

{x} = [¢]{n} (56)
uq uq uq
where o = | 1720 {2 "2 (57)
Unj1 (up)2 Unln

[¢] is referred to as the modal matrix and {n} is called principal coordinates, normal
coordinates or modal coordinates.

Eqg. (55) can be written as
[m]{x} + [k]{x} = {F} (58)
and substituting eq. (56) into (58) yields
[ml(g] {n} + (k] [¢] {n} = {F} (59)
Pre-multiplying eq. (59) by the transpose of the modal matrix i.e. [¢ ]T we obtain

(01T [m]l[ol{n} + [#1T[k][o] {n} = [o]T {F} (60)

In eq. (50) the mass matrix was post and pre-multiplied by one mode shape and its
transpose, giving a scalar quantity, while in eq. (60) the mass matrix is post and pre-
multiplied by all the mode shapes and their transpose. Thus the product is a matrix
[M] whose diagonal elements are some constants while all the off-diagonal terms are
zero, i.e.
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[v) (61)
[K] (62)

(@17 [m] (9]

Similarly (817 (K] (9]
where [M] and [K] are diagonal matrices.
Hence eq. (60) can be written as
Im){#n} + [K]{n} = (017 {F} (63)
Eq. (63) represents n equations of the form
M; 7+ Kinj= {91 T{Fl = F; (64)
where {@;} is the ith column of the modal matrix i.e. the i th mode shape. M; and K; can
be recognised as the ith modal mass (generalized mass) and ith modal stiffness

(generalized stiffness) respectively, see egs. (50) and (51). Eq. (64) is the equation of
motion for single degree of freedom systems shown in Fig.11.

i il o

K;

820369

Fig.11. Single degree of freedom system defined by eq. (64)

Since Kj = wizMi see eq. (51), eq. (64) can be written as

. Fi _ (il {F)

mT T e ml 191) (6)
Once the solution (time responses) of eq. (63) for all ns is obtained, the solution in
terms of the original coordinates x can be obtained by transforming back, i.e. substi-
tuting for ns in eq. (66) {x} =[¢]{n}

It should, however, be noted, that the modal matrix [¢] of eq. (57) can also be made up
of columns of the normalized mode shapes (such that M, = 1). Such a matrix is called a
weighted modal matrix [@]. If this matrix is used instead of the matrix with natural
mode shapes, (see section on Normalization of Mode Shapes), eq. (65) would be
simplified to

i+ wiZng = F o= 1T {F) (66)

Thus the modal mass would be unity and the modal stiffness would be the square
of the natural frequency of the ith mode.

Let us consider our numerical example of the system of Fig.9 with forcing functions F4
and F,. Thus eq. (36) becomes
F
(67)

I P I R

X1

X2



The natural frequencies and natural mode shapes were

1

w1 = V2/5 ?1

1
1

I

0.)2=1

-1/2

Thus the modal matrix [¢] using natural mode shapes *is

1 1
-]
1 -1/2

The x coordinates are transformed by the equation
{xt = l[¢] {n} (68)

i.e. X1 - [1 1] \7?1
X9 1 -1/2 no

Substituting eq. (68) into eq. (67) and pre-multiplying by [¢]T gives

5 0 4 -2
(17 (9] + [¢]T [¢]
0 10 -2 6

* As mentioned above, the modal matrix can also be made up of columns of the normalized mode shapes
(such that M; = 1). Using the normalized mode shapes from egs. (52) and (53), the weighted modal matrix
[@] is given by

(69)

m

M

n
1 ’ - 16"
2

5 - Vs /2715
V115 —V2/15/2

Thus the products [$]T[m][$] and [&]T[k][al are given by
GIT (M1 (5] V115 /1715 5 0] |V1/15 V2715 10
¢ [m]le] = =
V2715 —VZ7i5/2| |0 10| |Vi/is  —v27BR| |0 1
[471T K1 (3] = V1/15 V1/15 4 -2 V1/15 \V2/15 2/5 0
V215 —V2/15/2| |2 6| |/1716  —v/2/15/2 0o 1
It can thus be seen that by using the weighted modal matrix for coordinate transformation the mass
matrix becomes a unit matrix and the stiffness matrix is diagonalized with the diagonal terms equal to the
eigenvalues — the square of the natural frequencies.

In general 617 (m] (&)

0] n
> =
Z, &

and  [81T (k] [§]

0 Ao Qe 0
where [A]=|: 2 0
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The products [¢]1T[m][¢] and [¢]T[K][¢] are calculated to be

1 175 o1 1 15 0
(61T [m] [¢] = ] =

1 —1/2]lo 1ol -1/2 0 15/2

1 1[4 =21 1 1 6 0
(01T [K] [¢] = =

1 —1/2] |-2 6] L1 —=1/2 0 15/2

Substituting these products into the equation above we obtain

R 1 6 4
+
o 15/2] %, 0 15/2] |n, 1 —1/2] [Fy

Thus the equations of motion in n are

15/27,+ 16/2ny = Fq — Fy/2

The generalized masses and stiffnesses for the two modes can be seen to be the same
as those calculated under section 3.1.4. Generalized Mass and Generalized Stiffness.
Thus the original set of equations (67) are shown to be uncoupled; in other words the
two degree of freedom system is broken down to two single degree of freedom systems
shown in Fig.12.

15
4 * ¢ F+Fp 2 15/2 Fi — Fy/2

6 15/2

820370
Fig.12. The undamped two degree of freedom system shown in Fig.9, broken down to
two single degree of freedom systems

Once the time responses for n,and n, have been determined from eq. (70), they can
be substituted in eq. (69) to give the time response in terms of the original coordinates
X, thus

x1(t) = nqy(t) +mylt)

(71)

Xa(t) = my(t) =  myt)



Eq. (71) in fact illustrates a very important principle in vibration, namely that any
possible free motion can be written as the sum of the motion in each principal mode
in some proportion and relative phase. In general for an n degree of freedom system

X1 uq L
Xo| = mq]up COS(O)]Y"@]) + Ny jU2 COS(th—‘62)
Xn Un 1 un 2
Uq
Foe, n, |uz | cos (w,t—0,) (72)
Unln

If the two degree of freedom system discussed above is given arbitrary starting
conditions, the resulting motion would be the sum of the two principal modes in some
proportion and would look as shown in Fig.13.

820409

820410

Fig.13. Response of the two degree of freedom system when given arbitrary starting
conditions

3.3. FORCED DAMPED VIBRATION - PROPORTIONAL DAMPING

The assumption that systems have no damping is only hypothetical, since all struc-
tures have internal damping. As there are several types of damping, viscous, hysteret-
ic, coulomb, aerodynamic etc., it is generally difficult to ascertain which type of
damping is represented in a particular structure. In fact a structure may have damping
characteristics resulting from a combination of all the types. In many cases, however,
the damping is small and certain simplifying assumptions can be made.
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3.3.1. Viscous Damping

The equations of motion of the two degree of freedom system with damping, shown in
Fig.9, are given by eq. (29)

i.e. [my 0 X1 cq1 teo —Co )'(1 k1 + k2 —-k2 X1 F-]
+ + = (73)
0 my | | X2 —C2 cy tcgf (X2 —ko ko + kg [ X2 Fy
In short form they can be written as
[mlix}y + [el{x} +[k]{x}={F} (74)

Two assumptions are taken for granted before attempting solution of these equations.
Firstly, that the type of damping is viscous, and secondly that the distribution of
damping is proportional. By proportional damping it is implied that the damping matrix
[c] is proportional to the stiffness matrix or the mass matrix — or to some linear
combination of these two matrices. Mathematically it means that

either [c] = a[m]
or [c] = BIK] (75)
or fc] = a[m] +B[k]

where « and 3 are constants.

Because of the assumption of proportional damping, the coordinate transformation
(using the modal matrix for the free undamped case) which diagonalizes the mass and
stiffness matrices, will also diagonalize the damping matrix. Thus the coupled equa-
tions of motion for a proportionally damped system can also be uncoupled to single
degree of freedom systems as shown in the following.

Substituting the coordinate transformation of eq. (56) into eq. (74) we obtain

[m] [@]{n} + [cllolin} + [k][@]{n} = {F} (76)
Pre-multiplying eq. (76) by the transpose of the modal matrix i.e. [4]T we obtain
BIT[m] [¢1in} + [@1T[c] [¢]in} + [#]TIKI[¢)in} = [#]T{F} (77)

It was shown before, (see eq. 61 and 62), that because of the orthogonal properties of
the mode shapes the mass and stiffness matrices are diagonalized, i.e.

(61T [m] [¢] = [M]
and 61Tk [¢] = [K]

Because of proportional damping i.e.

[c] = o [m]+B[k]

we have (61T (][9] = (61T [alm]+B (K] (6]
= a(¢]T[m] [¢] + B[8]T [k] [¢]

i.e. [¢1Tlc]l [¢] = «[M] + 8 [K] = [C]

where [C] is a diagonal matrix.



Thus substitution into eq. (77) gives

] {7} + [c] {a} + [K) {n} = (617 {F} (78)

Eq. (78) represents an uncoupled set of equations for damped single degree of freedom
systems. The i-th equation is

M;n; + Cim; + Kimi = {¢;1 T{F} = F, (79)

which represents the equation of motion of a system shown in Fig.14.

820371

Fig.14. Single degree of freedom system defined by eq. (79)

Since K; = w2M,, see eq. (51), eq. (79) can be written as

"‘+2§i°""‘+‘”?”‘=% =W (80)

i
h ¢ Sy (81)
where | = T
Y2V KM,
The solution of a damped single degree of freedom system, as described by eq. (80) has
been discussed previously. Once the solution of eq. (80) is obtained for all 5s, the

solution in terms of the original coordinates x can be deduced by transforming back, i.e.
substituting for ns. in eq. (56).

It should be noted that if the damping matrix is proportional to the stiffness matrix i.e.
[c] a [k] then from eq. (80) we see that

YL T R

which means that the higher frequency modes will have higher damping ratios.

3.3.2. Hysteretic Damping

Hysteretic or structural damping was discussed under single degree of freedom sys-
tems. It was shown, that in this case the damping force is proportional to the elastic
force, but as energy is dissipated, the force is in phase with the velocity. Thus for simple
harmonic motion the damping force is given by jykx, see eq. (19). For a multi-degree of
freedom system, the equations of motion with hysteretic damping can be written as

[m]{xi+ jy [k]{x} + [k]{x}={F| (82)
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Changing to Principal Coordinates as shown in the section above leads to
[M] {7} + (1 +in [K){n} = (61T {F} (83)

Thus each equation is of the form

M7+ (1 + i) Kimg = {057 (F)

OT
ie. mt (T+jy) wZn = @V{-ﬂ (84)
I
L (F} = {7 el
then {n}={7} eiwt
Substituting in eq. (84) we obtain
T(— —
_ . N Fi
— w27 + (14 w27 = {—'}%}— = v'l (85)

the solution of which has been discussed previously.

3.4. FORCED DAMPED VIBRATION - NON PROPORTIONAL DAMPING

3.4.1. State-Space Method

When the damping matrix is not proportional to the mass or the stiffness matrix,
neither the modal matrix nor the weighted modal matrix will diagonalize the damping
matrix. In this general case of damping, the coupled equations of motion have to be
solved simultaneously, or they need to be uncoupled using the state-space method
which is briefly introduced here.

Basically, by this method the set of n second order differential equations are converted
to an equivalent set of 2n first order differential equations, by assigning new variables
(referred to as state variables) to each of the original variables and their derivatives. To
illustrate the procedure, the equations of motion for the two degree of freedom system
shown in Fig.9 are written as

'm1 07 X1 I:m, 0 X1 0
_0 my | f(2 0 my Xz 0
. 86
"m] 07 X] rC1 + C2 —CZ X1 k1 + k2 —k2 X1 F] ( )
+ + =
0 maf[x LCQ cr Cz] X2 —k2 ki + ko] Ix2 F2
or in partitioned matrix form as ‘
[0 0 my 07 ]| (%: [ m; 07 [o 017 [ (% 0
10 0] 0 my | X (0 my | 0 0] Xp 0
+ =
—m1 07 cq1 tco —02- \ ).(1 [0 07 l:k1 + k2 — k2— X1 F-| }
_0 my | [ —C2 cq t c2 | )'(2 L0 04 L— k2 k1 + k2_ X2] F2




Substituting

X1= 24 5(1=21=Z3 *1=.Z3
Xy =12 X)=2p = 24 Xo =24
we get
'[o o] [m1 o]' 7 i [m1 0 [o o]" ‘23 0
0 0 0 mo Z4 - 0 mo 0 0 Zy 0
m 0 cqtCo —Co ‘Z]‘ * [0 0 k1+k2 —k2 Z4 - F1
[0 mz} —Cy Cqt Cz] .22 0 0 —k2 k 1t kz] ' ZH } F2
L - - -
(87)
which can be abbreviated to
[Al{z} + [B] {z} = {Q! (88)
[0] [m] [m] [O] {0}
where [A] = [B] = and {Q} =
(ml  [c] 0] [kl {F}

It can be seen that whilst the second order equations have been reduced to first order
equations, the number of equations have been doubled adding to the burden of
computation. The solution of the above equations will not be given here, but can be
found in Refs. [19,21,22].

The solution of above equations for free vibration reveals, that damped natural
modes do exist, however, they are not identical to the undamped natural modes.
For the undamped modes, various parts of the structure move either in phase or
180° out of phase with each other. For the non-proportionally damped structures,
there are phase differences between the various parts of the structure, which
result in complex mode shapes. This difference is manifested by the fact, that for
undamped natural modes all points on the structure pass through their equilibrium
positions simultaneously, which is not the case for the complex modes. Thus the
undamped natural modes have well-defined nodal points or lines and appear as a
“standing wave”, while for complex modes the nodal lines are not stationary.

3.4.2. Forced Normal Modes of Damped Systems
(Characteristic Phase-Lag Modes)

For an n degree of freedom system with viscous damping, the equations of motion for
steady state sinusoidal excitation can be written in its general form as

[m]ix} + [c]ix} + [k]{x} ={F} sin wt (89)

where the system inertia, damping and stiffness matrices [m], [c] and [k] respectively,
are assumed to be real symmetric and positive — definite. If the damping is hysteretic
the second term would be given by 1/ [d] {x}, where [d] is the hysteretic damping
matrix. In the general case damping would be non-proportional and thus the damping
matrix cannot be diagonalized using the normal mode transformation. For an arbitrary
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set of forces {F} and excitation frequency « the solution of eq. (89) is rather complicat-
ed. Although the responses at each coordinate x are harmonic with the excitation
frequency, they are not all in phase with each other or with the excitation force. If,
however, a system with n degrees of freedom is excited by n number of forces which
are either 0° or 180° out of phase (often called monophase or coherently phased
forces), then for a particular ratio of forces, the response at each of the coordinates will
be in phase with each other and lag behind the force by a common angle 8 (called the
characteristic phase lag).

Thus we have to determine the conditions which will produce a solution of the form

X1 Xq]| sin(wt —6) = {¥}sin(wt—0)

X9 X2

X3 = >_<3 (90)
x.n Xn

For any given excitation frequency w, there exist n solutions of the type given by eq.
(90), where each of the modes {y;} is associated with a definite phase 6, and a
corresponding distribution of forces {I}} which is required for its excitation. The re-
sponse under these conditions is called the “forced normal modes” of the damped
system, since every point of the system moves in phase and passes through its
equilibrium position simultaneously with respect to the other points. The existence of
these modes appears to have been first pointed out by Fraeijs de Veubeke in what is
termed as the “Characteristic Phase-Lag Theory” [23]. The theory has been expounded
by other authors, namely Bishop and Gladwell [8] but can also be found in Refs. [9, 10,
21, 24).

Substituting eq. (90) in eq. (89) gives
sin (wt — 0) [[k] — w? [m]]{\l/} + wecos (wt—0) [c]{y}t = {F} sin wt (91)

Expanding the sin (wt— ) and the cos (wt- ) terms and separating the sin wt and cos wt
terms we obtain

cos 0 [[k] — w2 [m]] {Y} + wsin6 [c]{y}l = (F} (92)

sin§ [[k] — w2 [m{]{¥} —wcosb[c]{y} = {0} (93)

These equations contain three unknowns {F}, {{} and 6 since w is given. If cos6 #0, eq.
(93) may be divided by cosé to give

[tan 6 [(k] - w2 [m]] —wc]] {v¥} = {o} (94)

Eqg. (94) has a non-trivial solution if the determinant

tan 6 [[k] — w2 [m]] —w[c]l -0 (95)
It is evident, that for a given w there are n values of tang; (i = 1,2---n) corresponding to

the n eigenvalues, and for each tané; there is a corresponding eigenvector {J}
satisfying the equation

[tan 6; [[k] — w2 [m]] — wlcl] {¥;} = {0} (96)
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Fig.15. Eigenvectors relative to the force vector for each w. At each 9 the displace-
ments at all points are in phase

Fig.15 illustrates the eigenvectors relative to the force vector for each frequency.
If eq. (96) is premultiplied by the transpose {¢;}" and rearranged, we obtain

w {YiiTle]l ty;!

(97
Wit Tk = w? [m]]{ g} )

tan 0' =

From eq. (97) it can be seen that each of the roots tan 6, is a continuous function of w.
For low values of w, tang; is small i.e. §; is a small angle. As w increases and
approaches w, the undamped natural frequency, one of the roots 6; (which can be
named 6,) approaches the value 7/2. As w is increased above w, the denominator of
eq. (97) gets negative and 6, (w) gets larger than 7/2. When w tends to <o, 6, (w) tends
to w. In a similar manner the remaining roots ¢, (i = 2, 3, --- n) can be plotted as a func-
tion of frequency w, where 6, (i = 2, 3 --- n) is equal to 7/2 at the ith undamped natural
frequency w;. Thus 6 is that root which has the value =/2 at the undamped natural
frequency w = w,. (The numerical example given at the end of the section will make
this point clearer. See also Fig.17).

Having examined the variation of eigenvalues (tan ;) as a function of frequency, the
mode shapes can now be investigated. It can be seen from egs. (95) and (96) that at
any one frequency the mode shapes depend only on the shape of the damping matrix
and not on its intensity. If every element in the matrix [c] is multiplied by a constant
factor, then eq. (95) shows that the roots tan 9, will all be increased by the same ratio.
Thus eq. (96) which determines the mode shapes, will be multiplied throughout by the
same factor and the mode shape {¢i} will be unchanged.

Eq. (96) can be re-written as

[[k]—oﬂ (m] — “’[°]]

i

=10
tan 6, I ] (98)
When wis equal to one of the undamped natural frequencies, say w =w1, then one of
the roots 6, is 90° as shown above. Thus eq. (98) which determines the mode shape
for this root becomes

[kl — w? [m]] {wa} = {0} (99)
It can thus be seen, that when the frequency is equal to one of the undamped

natural frequencies, the mode shape for one of the roots (which is equal to 7/2) is
identical to the Principal or Normal mode shape (see eq.31).
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Attention can now be paid to the force ratio that is required to excite any one mode
{¢i} for the corresponding root tan 6, at any one frequency. The force ratio required
can be calculated from eq. (92) namely

cos 0; [[k] — w2 [m]] {¥;} + wsinb;[c]iy;} = (I} (100)

In the special case when w = w1 one of the undamped natural frequencies, one of the
roots 0, = 6, = 90° and eq. (100) reduces to

wyle]{yqt = I} (101)

To illustrate the concepts discussed above consider the same numerical example of the
two degree of freedom system of Fig.9, but with the values of damping added as shown
in Fig.16.

Fqsin wt Fp sin wt
2N/m 2 N/m 4 N/m
WWW WW— YWY
- 5 kg D—— 10 kg \
A 1 E
4c Ns/m 1c Ns/m L 7¢ Ns/m
X1 X2
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Fig.16. Two degree of freedom system with non-proportional damping

Thus the equations of motion according to eq. (29) become

5 0 5c —1c 4 -2 Fql sin ot
+ + =
0 10 —1c 8c -2 6 Fy

For a non-trivial solution the determinant of eq. (95) must be equal to zero, i.e.
tan 0 [ 4 —2] w2 [5 o] wc[ 5 —1]
pa— — = O
-2 6_ 0 10 —1 8

i.e. tan 6 (4 — 5w2) — Bwce tan 6 (=2) + wc

X1 X, X1

X2 X2 X2

tan 0 (—2) + wc tan 6 (6 — 10w?2) — 8wc

2
ie {tan6 (4—5w2)— Buwe | {tan 6 (6 — 10w2) — 8we b—{tan6 (-2) + wel =0
which reduces to

(20 — 7002 + 500%) tan2 9 — 2 (29 — 45w2) we tan® + 39 w2c2= 0 (102)



The undamped natural frequencies of the system are given by letting c = 0, i.e. by the
equation

(20 — 702 + 50w?) = 0

They are found to be w, = /2/5 = 0,63 rad/s and w, = 1rad/s, which obviously should be
the same as those calculated under section 3.1. Free Vibration.

Dividing eq. (102) by tan?¢ and substituting o = - w‘; we get
an

3902 — 2(29 — 45w2)0 + (20 — 70w2 + 50w%) = 0

The roots of this equation are given by

we (29— 45w2) + /(29 — 45w2)2 — 39 (20 — 7062 + 500?)

= = 103
7 tan 0 39 ( )

When w is equal to one of the undamped natural frequencies w; or w, the equation
reduces to

wce (29 — 45w2) + (29 — 4502)
tan 6 39

Thus when v = w, we get

_ wic (29 —45w42) £ (29 — 45w42)
tan 0 39

so that #; = 90° for the negative sign and

39w c
0 = tan—1<—1——> for the positive sign.
2 2(29 — 45w, 2) P 9
Similarly when o = w, we get

_wgc  (29—45w,2) £ (29 — 45 w,2)
tan 0 39

so that 6, = 90° for the negative sign and

61 = tan—! 39 wyc for the positive sign.
2(29 — 45 w,?)

The variation of ¢, and ¢, can be plotted as a function of frequency using eq. (103). The
curves are shown in Fig.17 for three values of damping c, corresponding roughly to
light, medium and heavy damping. The shape of the curves are seen to be similar to
those of Fig.3b.
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180°

c=0,1
01
135°
‘ c=05 64 /
0
c=09
90 5
c= 0,9 62

45°

0° I }
0 0,2 0,4

i
1 1,2 1.4
820988

Fig.17. Variation of the roots ¢, and ¢, as a function of frequency for three values of
damping

The mode shapes are obtained by substituting numerical values for the matrices [m], [c]
and [k] in eq. (96), i.e.

tan 0 [4 —:l w? |:5 O] wc[S —1:\ uq 0
2 6 0 10 18|l 0

tan 0; (4 — 5 w?2) — 5 wc tan 0; (—2) + wc] (ug 0
i.e = (i=1,2)
tan 0; (—=2) + wc tan 0; (6 — 10 w?2) — 8 wc| [up : 0
Expanding the first equation we get
{tanf, (4-5w? - 5wc} u; + {tand, (-2) + wc} u, = 0
uq B 2tan 0; — wc B 2 — wc/tan 6;
Thus ‘u_z tan 6; (4 — 5 w?) — 5 wc (4 —5 w?2) — 5 wc/tan 6,
Substituting for wc/tanf from eq. (103) we obtain
U] 49+45w2+ \/61+120 w2 +75 w? 104)
Y215 11+30w2+5./ 61+120 w2+ 75 w4
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Fig.18. The characteristic phase lag modes as a function of frequency

The characteristic phase lag modes are plotted as a function of frequency using eq.
(104) in Fig.18. The positive sign now corresponds to i = 1 for the first mode and the
negative sign corresponds to i = 2 for the second mode. Note, in the special case
when w is equal to the first undamped natural frequency w; = }2/5 for i = 1 we obtain

l”’] [u1} 49+ 18 + 11
1 = PR—— = e ———————
w1 up |, 11412455

which is the same as the first Principal Mode Shape {¢,} (see section 3.1.1.).

At w =w; = }2/5 for i = 2 we obtain

4l

1

Uy

u2

49+18-11 - 56

11+12—-55 32

Similarly, when « is equal to the second undamped natural frequency w, = 1 fori = 1
we obtain

Y = =
! 1)0)2 11+30+80 121

u1| _ 49+45+16 110
us 1

At w = w, =<1 for i = 2 we obtain
u 49+45-16 —2
¥o = |0 = -
Wy uz |, 11+ 30— 80 1

which is the same as the second Principal Mode Shape {¢,}.
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The force ratio required to excite any one mode {y;} for the corresponding root tan#;
at any one frequency can be calculated from eq. (100), i.e.

cos0; |[4 27 w? [5 0 uy we sin 9;[5 —1]
~ +
2 6 o 10]|]|u,. 1 8

uj Fq

(105)

U2 F2
The force ratio for each root can be plotted as a function of frequency by substituting
the value of § for each w and the corresponding mode shape. Fig.19 shows the force
ratios required as a function of frequency for the two fs.

0,84
0,4 -
[y
=
u
2
B o] T T T T T T T T
% 0,2 0,4 0,6 0,8 1,0 1.2 14 1,6
g Frequency w rad/s
w
—0,4 -
-11/10
_0'8 -
4
1,24 T

840629

Fig.19. Force ratios required to excite the two modes as a function of frequency

It is, however, interesting to calculate the force ratios at the undamped natural
frequencies. As shown previously, at any one undamped natural frequency, one of the
roots tané, = oo, i.e. one of the 6§, = 90°, and for that root the mode shape obtained is
the Principal Mode Shape.

Thus eq. (105) reduces to (see eq. 101)
wCe [5 —1]
—1 8 U2 F2
which gives the force ratio required to excite the Principal Mode shape at the
corresponding undamped natural frequency.

uq Fi

Substituting the first undamped natural frequency w; = y2/5 and u;/u, = 1 we obtain

«/2/50{5 —1] 1 lﬂ
-1 8]l1 Fy
i.e. V2/5¢c4=F
v 2/5 c7 = F2
i.e. Fi/Fp= 4/7 = {1}



Substituting the second undamped natural frequency w, =
obtain
1c [5 —1] -2 ‘F1]
-1 8 1 Fy
i.e c(—11)=F
c10 = F
ie. Fi/Fp= —11/10 = {I,}

Before concluding this section it is important to recapitulate

1 and uy/u, = -2/1 we

the following points:

1) For each frequency of excitation there are as many characteristic phase angles as
there are number of degrees of freedom, corresponding to certain sets of forces.

2)

For each characteristic phase lag there is a corresponding mode shape which

varies with frequency. At the undamped natural frequencies one of the mode
shapes is identical to the corresponding undamped Principal mode.

3) The mode shapes depend on the shape of the damping

intensity of damping.

4)

matrix and not on the

In each mode the responses at the coordinates are all in phase, but lag behind the

excitation force by an angle ¢. At the undamped natural frequency, § = 90° for one

of the modes which is the Principal mode.

5) Orthogonal properties of phase lag modes also exist as shown in the footnote*.

* Footnote

The orthogonal properties of the principal modes of vibration were demonstrated previously in section 3.1.3..
To derive analogous properties of forced modes. eq. (94) can be written for the ith eigenvalue and
eigenvector and premultiplied by the transpose of the jth eigenvector. The procedure is repeated with i and j

interchanged giving the following two equations,

tan 0;{y;} " [k = w2 (m]] {ui} = @ {v;} el fui} = 0 (106)
tan0;{w;} " [kl - w2 Im] {;} — w{vi} (el {y;} = 0 (107)
Since [m], [c] and [k] are symmetric matrices eq. (107) can be transposed to obtain
tan 03y} ik = w2 (m]] {ui} — o {y;)} T 1e) i} = 0 (108)
Subtracting eq. (108) from eq. (106) we obtain the orthogonal properties as
(i} k1= w2 (m] {9} = 0 (109)

and fui} T el fui} = 0
provided tanf; # tan,.
Combining eqgs. (109) and (110) with eq. (92) we obtain the third relation

{o T {Rd = 0 = {ui T{R)

(110)

(111)
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EXPERIMENTAL METHODS
4. INTRODUCTION

The first part of this book deals with the theoretical analysis of free and forced vibration
of undamped and damped multi-degree of freedom systems. Such systems are de-
scribed by [m], [c] and [k] matrices and it was shown how their responses are obtained
in terms of the modal parameters. To provide experimental data to validate the
theoretical model, the problem facing the experimentalist is the inverse of this; to
deduce the matrices from the vibration. However, the [m], [c] and [k] matrices are not
directly measurable, and have to be deduced from measurable quantities, such as the
natural frequencies, dampings of the system and the mode shapes. Therefore, the first
step for the experimentalist, is to treat the continuous structure that he has to test, as
one that possesses a finite number of degrees of freedom. The properties of a
continuous structure can be simulated to any desired accuracy by a system possessing
a finite number of degrees of freedom n, provided n is large enough. Each of these
degrees of freedom can then be examined individually. Since each degree of freedom
corresponds to a natural frequency and a mode shape, it is interesting to see how they
manifest themselves in the frequency and the modal domains.

832019

Fig.20 Frequency response of a free-free beam at three measurement points
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Consider a simple free-free beam shown in Fig.20, and assume it has only the first three
degrees of freedom. To determine the total vibration of the beam, it must be excited at
some point and the vibration measured at several points on the beam. If this time
domain information is transformed to the frequency domain, the frequency response
curves obtained at the three points would be as shown in Fig.20. It can be seen, that the
sharp peaks (resonances) occur at the same frequencies, independent of where they
are measured on the beam. The only difference we observe, as we move from point to
point, is the relative height of the resonances. Although phase information is just as
important, it is not taken into account in Fig.20 for clarity of the figures. Whilst the
magnitude of the frequency response curves gives the magnitude of the mode shape,
the phase gives the direction of the deflection.

In Fig.21 the frequency response curves are obtained at several accelerometer posi-
tions on the beam. By connecting the peaks of the resonances of a given mode, and
taking the phase into account, the mode shape at each resonance frequency can be
traced out. Thus by viewing the figure along the distance axis we obtain a combined
frequency response. The figure when viewed along the frequency axis shows the three
mode shapes, and is referred to as the modal domain view. Just as any real waveform
can be expressed as a sum of simple sine waves, any vibration can be represented as a
sum of principal modes. The right side of Fig.21 shows the total vibration envelope, as a
sum of the three modes.

It can be seen that the same amount of information is available from the three
dimensional plot of Fig.21, whether it is viewed in the frequency domain or in the modal
domain. In other words there is no loss of information by this change of perspective,
similar to the case of transforming data mutually between the frequency and the time
domain. To determine the mode shapes, therefore, one can either excite the structure
at the resonance frequencies and measure the structural deformation in each vibration
mode, or they can be deduced from the frequency responses measured at various
points on the structure. Whilst sinusoidal excitation is used for the former method, wide
band excitation can be used for the latter. These methods can be further sub-divided
into two categories—single shaker techniques, and multiple shaker techniques general-
ly required for the excitation of larger structures. In the following chapters, the various
techniques used for obtaining the modal parameters, will be viewed from three aspects:

Amplitude

Second Mode
§ Third Mode

Total Vibration Envelope

Modal Domain View

821133

Fig.21. Three dimensional view illustrating the frequency and the modal domain



1) The way in which the structure is excited and the instrumentation required,
2) The data obtained and its presentation, and
3) The analysis of the data

Furthermore, the advantages and disadvantages of the various techniques developed
over the course of years will be discussed. Particular emphasis is placed on the
limitations of the different methods, to elucidate the reasons for the on-going develop-
ment of more sophisticated techniques in the continuing search for an ideal modal test.
This is briefly touched upon in the following.

The simplest and most commonly used technique is the “peak amplitude” method, in
which the structure is excited by a sinusoidal force from a single shaker and the
“response curves” of total amplitude, obtained at several points on the structure, are
recorded as a function of frequency. The required information is then extracted from
these curves. However, this method has inherent deficiencies, in that not enough is
measured, and what is measured is displayed unsatisfactorily. De Vries [28] (1942) and
Kennedy and Pancu [1] (1947), having recognized the inadequacies of this method,
suggested the use of vector response plots which is widely used today for estimation of
damping and the natural frequencies. The mode shapes obtained with this technique,
using a single shaker, may not always be acceptable; however, they will, in general, be
better than those obtained with the peak amplitude method.

Since the vibratory response of a structure is due to the response in all the principal
modes simultaneously, the measured mode shapes are often distorted. This problem is
further exacerbated in the case of structures with close natural frequencies where
separation of modes becomes mandatory. Stahle [2] has described a “Phase Separa-
tion Technique” for isolating the individual modes with simple methods of excitation for
lightly damped structures.

With the advent of the two channel real time FFT-analyzers, measurement of response
to wide band excitation signals (in contrast to the traditional sinusoidal excitation) has
been made possible. In this technique, the frequency response function of a structure
can be measured at a single point, due to impulse excitation at various points on the
structure, or the structure can be excited at a single point using various forms of wide
band random signals, and the frequency response function measured at several points.
The modal parameters are then extracted by analytic curve-fitting the measured data in
both the time and the frequency domains. Exhaustive amounts of technical literature
exist today on methods and algorithms for the extraction of modal parameters. The
drastic reduction in experimental time achieved by real time analysis has therefore
rightly made this the dominant technique for modal testing of structures since the early
1970’s. Furthermore, on account of the price of real time analyzers being affordable,
these techniques have emerged in the last decade from research laboratories to
become part of the practitioner’s repertoire.

Since the accuracy of the modal parameters depends on how precisely the admittance
or the frequency response function matrix can be measured, significiant consideration
should be given to exciting the structure adequately, in order to maintain the vibration
amplitudes as close as possible to the operating levels in all areas of interest. This is
relatively easy for simple structures and individual components which can be excited
evenly. In the case of large structures, such as aircraft wings, automobiles, train car
bodies and other large assemblies with numerous joints, vibration energy is quickly
dissipated within the structure, producing widely different vibration amplitudes at
various locations. Additionally, non-proportional damping, non-linear effects and close-
ly spaced modes are often encountered in large structures, which not only impede in
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locating the frequencies at which to identify the modes, but also the mode shapes
based on one exciter position may not agree with those based on another exciter
position. To mitigate some of these difficulties, multi-point excitation can be used, by
which a larger amount of energy can be fed more uniformly into the structure than with
single point excitation. Here again two forms of excitation can be used — sinusoidal
and wide band random.

The theoretical requirements for exciting a structure with multiple shakers using sinu-
soidal excitation was laid down by Fraeijs de Veubeke [23] known as the Characteristic
Phase Lag Theory which is briefly described in Section 3.4.2.

The testing of large structures is carried out in two steps: In the first step the number of
modes and their resonant frequencies are roughly established using single shaker
sweeps. The presence of modes are indicated by resonant phenomena and phase shifts
in the response, and can be difficult to detect when modes have similar shapes and
natural frequencies. Once the existence of a mode has been established, the second
step involves isolation (tuning) of the mode. This is achieved by distributing the avail-
able number of shakers around the structure, guided by experience and heuristic
reasoning, and adjusting (appropriating) the amplitudes of the mono-phase ™ forces on
the shakers, such that only the mode of interest is dominantly excited in that particular
frequency range. The structure thus responds predominantly in the principal mode as a
single degree of freedom system, and the modal parameters can then be easily
calculated. The number of shakers used and their judicious distribution around the
structure govern the accuracy of the results.

Since the early fifties most full scale modal tests have been based on the approach
outlined originally by Lewis and Wrisley [3] (1950). In general his method involves
iterative adjustment of the mono-phase forces at the shakers and the excitation
frequency, until the velocity response at all points on the structure is coherent (all in
phase or 180 ° out of phase with the force vector). This objective can only be fulfilled if
there is strict equilibrium between the applied and damping forces everywhere in the
structure. Since the dissipative forces in a real structure are distributed continuously
throughout the structure, this objective cannot be fully achieved in practice with a
limited number of shakers, and therefore the iterative procedure is stopped when the
differences in the phase responses are found to be a minimum [4, 5, 6, 25]. This is a la-
borious and time consuming process and isolation of modes in regions of high modal
density can be difficult. In an effort to alleviate the problem and automate the force
appropriation task, Asher [7] (1958) proposed a quantitative method, which detects both
natural frequencies and provides the force distributions, using only experimental
transfer admittance data as input.

In Asher’s method the admittance matrix is measured using single shaker sweeps at
various points on the structure. The determinant of the real part of the admittance
matrix is now plotted as a function of frequency, and the frequencies at which the
determinant vanishes, give excellent approximations to the undamped natural frequen-
cies. The force ratios required to tune a particular principal mode can then be calculat-
ed from any one column of the adjoint of the real part of the admittance matrix
evaluated at the corresponding undamped natural frequency. A narrow band frequency
sweep around the natural frequency with the calculated force ratios is now performed to
refine modal parameter estimates.

Unfortunately, Asher was not able to implement his method because of equipment
limitations. The lack of sophisticated data acquisition and processing equipment there-

* Mono-phase is used adjectivally with either forces or responses to describe a set whose angles relative to
one another are all 0° or 180°.



fore discouraged attempts also throughout the 1960’s to apply Asher’s method in the
laboratory. Nonetheless, his method was considered to be significant enough to be
discussed, implemented and elaborated upon with renewed interest as illustrated by
Refs.[8-15, 31, 36, 42, 44].

The excitation of structures using dual input random signals to obtain frequency
response functions has also been attempted by Allemang et al [38-40]. Application of
Asher’s modal tuning procedures to frequency response function matrix is equally
possible, and in fact has been carried out by Ensminger and Turner [44] (1979), Hallauer
etal [10, 31] (1979), and Craig et al [36, 42] (1982). Ensminger and Turner in [44] have de-
veloped also another technique, which has been referred to as the “Minimum coinci-
dent response method” by Craig et al.

These methods are outlined in the following chapters with some illustrations of results
obtained by Asher’s method on synthesized analytical models. Although the software
for the various methods is obviously different, the instrumentation required for imple-
mentation of these techniques is more or less the same, and is described briefly in
Chapter 6. The essential features in the specifications, necessary for practical feasibil-
ity of these techniques are also pointed out. It might be worth mentioning, that apart
from equipment limitations, the success or failure of a particular technique may depend
on the malignancy of a structure, the cure of which may lie at the hands of an
experienced engineer.
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5. SINGLE EXCITER TECHNIQUES

5.1. PEAK AMPLITUDE METHOD

A dynamic test basically involves quantitative measure of the effect of a vibratory
force on a structure. If the structure is linear and elastic and excited by a sinusoidal
force, the resulting vibratory motion (response) is directly proportional to the exciting
force and at the same frequency. Measurement of the exciting force and the resulting
motion at a number of points over a range of frequencies would be sufficient to
describe the vibratory behaviour of the structure. This information can be presented
by, for example, plotting the ratio of motion to force as a function of frequency.

The motion can be measured either in terms of displacement, velocity or acceleration
and as a result different terms have been used for the ratios of motion to force.
Following is the terminology in common use:

acceleration _
force
velocity
force
displacement
force

Mobility

These ratios are further qualified by the term point, if the excitation and measurement
points coincide, and by the term transfer, if they are different, for example, point
inertance and transfer inertance.

Force

Transducer
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Fig.22. Instrumentation set-up for the peak amplitude method



Fig.22 shows an instrumentation set-up used for obtaining a response curve in which
the vibration exciter is fed with a certain amount of power at a slowly changing
frequency. Due to resonances in the test specimen and the vibration exciter, the
power necessary to subject the test specimen to a constant force level will not,
however, remain constant during the test, but will be a function of frequency. To keep
the force level constant a servo-loop is used in which the output from the force
transducer, mounted between the shaker and the specimen, is fed back to the exciter
control via a preamplifier. The output from the accelerometer mounted on the speci-
men is fed to an X-Y recorder which traces out a response curve as the frequency is
scanned. The response should be measured at enough points on the structure to
ensure that all modes will display their resonant characteristics in the response
curve of at least one of the points. This is the most commonly used method of
carrying out a resonance test.

Fig.23 shows a typical point inertance curve plotted on linear scales of a free-free
beam excited at constant force as shown. The first piece of information that can be
extracted from an amplitude response curve is the natural frequencies of the speci-
men, which are usually identified as the frequencies where peaks are attained — and
thus the name peak-amplitude method. It has been shown, however, in Ref. [8] that
theoretically the peaks do not occur exactly at the natural frequencies but at a
frequency displaced slightly on one or the other side of them. This is partly due to the
damping which couples the modes (non-proportional damping) and partly due to the

contribution from the other off-resonant modes at that frequency (see Section 5.1.1.).

The latter contribution will still be there, even if the damping does not couple the
motion in the principal modes. However, if the system is lightly damped and the
natural frequencies are widely spaced, these errors would be relatively small com-
pared to the experimental errors involved in locating the peaks.
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Fig.23.a) Point inertance curve for a free-free beam plotted on linear scales
b) Third resonance plotted on enlarged linear scales
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The second piece of information that can be extracted from a response curve is the
amount of damping in a particular mode. Damping is determined from the sharpness of
the peak (Fig.23b) and is normally measured in terms of the Loss Factory given by

W2 — Wi
n=—%——
“wo

where w, is the natural frequency and w; and w, are frequencies on either side of the
natural frequency where the peak amplitude is reduced by a factor of /2, (see eq. 16). (If
the amplitude is plotted on a log scale in dBs, w, and w, are frequencies where the
amplitudes are 3dBs below the peak amplitude).

Other parameters in terms of which damping is quoted are all related to each other
and are given by

p=28 0 08 e (112)
Cc Q T 2w

c
where — is the dimensionless damping ratio (see eq. 2)

CC

Cc is the critical damping

Q is the quality factor (see eq. 14)

) is the logarithmic decrement

tan o is the loss tangent

E is the energy dissipated per cycle at resonance
and w is the energy stored in the system.

It should be noted, as pointed out in Ref. [8], that in the calculation of the damping by
this method it is assumed that each peak represents motion in only one mode, i.e. the
contribution from the off-resonant modes is negligible — as assumption very often
conveniently forgotten in practice. For resonances that are well separated, however,
sufficiently accurate estimates of damping can be achieved, provided n» < 0,1.

If the off-resonant vibration is not negligible, but however, constant (as assumed by
Kennedy & Pancu [1]), it may appear at first sight that the off-resonant vibration could
be extracted from the measured amplitude. Unfortunately, this cannot be done directly,
as accelerations are vector quantities and phase angles of the responses have to be
taken into consideration. Thus the effect of the off-resonant vibration will be different
above and below resonance of the mode under consideration, resulting in a non-
symmetrical peak. This is explained further in Section 5.1.2.

To determine the mode shape, the structure is excited at a natural frequency, and the
ratios of the amplitudes at various points on the structure are determined. Fig.24 shows
the mode shape for the third natural frequency. As the acceleration goes through a
phase change of 180° as one passes through a node, the relative phase of the
accelerations at various points should also be taken into account.

Since the beam has uniform cross-section, the mode shape should ideally be symmetri-
cal; however, the asymmetry of the mode shape is evident. This is because more than
one mode is represented in general, at any one frequency, and therefore the mode
shape is not a true principal mode. In other words, the phase angle between the force
and the acceleration would not be exactly 90° at all points on the beam.
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Fig.24. Mode shape for the third natural frequency

While the loss factor is evaluated from a single peak, the mode shape is evaluated from
the ratio of a number of peaks. Thus if an error is made in the estimation of a peak due
to the contribution from other modes, the inaccuracies in the principal mode shape will
be greater than those involved in the determination of the damping.

5.1.1. Contribution from Off-Resonant Modes

It has been shown in the theoretical section that the response of a continuous structure
(multiple degree of freedom system) can be represented by the superposition of the
responses in its individual modes, considering each mode to respond as a single
degree of freedom system. Differences between the resonance characteristics of the
response of a single degree of freedom system and those of a multiple degree of
freedom system are, however, manifested by the contribution of the off-resonant
modes to the mode that is excited. This has been illustrated by Stahle in Ref.[2] whose
example will be briefly described in the following.
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Fig.25.a) Theoretical in-phase point inertance response of a single degree of freedom
system

b) Theoretical quadrature and total point inertance response of a single degree
of freedom system
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The full lines in Fig.25a) and Fig.25b) show the real part (in-phase component) and the
imaginary part (quadrature component) of the point inertance response of a single
degree of freedom system respectively. The dashed line in Fig.25b) shows the total
point inertance response. These responses can be derived from eq.(23). It can be seen
that the quadrature response peaks more sharply than the total response, and is equal
to the total response at resonance, since the in-phase response is zero. The total
response on either side of resonance is relatively large, because the in-phase response
varies more slowly than the quadrature response. Whilst the in-phase response is
asymptotic to 1/m above resonance, the quadrature response rapidly approaches zero
on either side of resonance.

To compare these responses with those of a multiple degree of freedom system,
Stahle in Ref.[2] has theoretically calculated the in-phase, quadrature, and the total
point inertance response of a free-free beam excited at one end, using the principle of
superposition of modes. Fig.26a) and Fig.26b) show these calculated responses as a
function of frequency. It can be seen that the amplitudes of the quadrature response
away from the resonance frequencies are relatively small, and that the peak values
accurately determine the resonant response of the individual modes. For the fourth
mode the quadrature response at the resonance frequency is approximately /2%
greater than the response of the individual mode.
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Fig.26.a) Theoretical quadrature and total point inertance response of a free-free
beam excited at one end
b) Theoretical in-phase point inertance response of a free-free beam excited at
one end



The total response, however, is more susceptible to the effects of the non-resonant
modes, which is evidenced by the increasing differences between the peak values of
the total response and the corresponding peak values of the quadrature response.
This is because the in-phase response starts at a relatively low amplitude, but
continually builds up due to the in-phase response in the various elastic modes. The
in-phase response is not zero at the resonance frequencies as was the case for the
single degree of freedom system. Since the total response is the vector sum of the in-
phase and quadrature responses, the total response at resonance is greater than the
response of the individual resonant mode. Thus significant distortion of the mode
shape will result, if it is determined from the total response, since the in-phase
response becomes appreciable for the higher modes.

For the free-free beam, the effects of the non-resonant modes are evident at the
resonance of the fourth mode, which is enlarged in Fig.27 for clarity. It can be seen
that the amplitude of the total response is larger than that of the quadrature response,
and that the peak of the totai response occurs above the true resonant frequency.
Although the difference in the frequency of the two peaks is small, the relative amount
of the non-resonant mode response at the frequency of the peak total response is
increased. Since the response of the resonant mode varies rapidly with frequency, the
contribution of non-resonant modes to the total response is increased from approxi-
mately 25% at the actual resonant frequency to approximately 65% at the apparent
resonant frequency indicated by the peak of the total response.
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Fig.27. Theoretical quadrature and total point inertance response of the fourth mode
of a free-free beam excited at one end

If the mode shape was determined from the quadrature response, adequate mode
shape measurement would be obtained, since the error in the amplitude of the fourth
mode as determined by the quadrature response is negligible for this simple system.
In practical structures, however, resonant modes are often close to each other,
causing modal interaction in the quadrature response. It is then necessary to separate
the individual modes from the quadrature response for which a method has been

outlined by Stahle in Ref.[2]. The problem of “close resonances” is further elucidated
in the next section.
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5.1.2. Close Resonances

Fig.28 shows two modes that are closely spaced in the frequency domain. Each mode
responds to a sinusoidal excitation at any frequency. This response is small unless the
excitation frequency is in the immediate vicinity of the mode’s resonant frequency.
Although the off-resonant contribution is relatively small at the frequency of the mode to
be excited, it adds to the distortion of the data and must, therefore be removed.

Mode Excited

Off—Resonant Mode

Response

Contribution from
Off—Resonant Mode y

| »

Frequency

821186

Fig.28. Two closely spaced modes illustrating contribution from the off-resonant mode

Kennedy & Pancu [1] (whose method will be described in the next section) assume that
the off-resonant vibration is constant (in amplitude and phase) as the excitation fre-
quency is scanned through the resonance. Therefore, at first sight one might be inclined
to extract the off-resonant vibration from the measured amplitude. Unfortunately, this
cannot be done legitimately, as accelerations (or displacements) are vector quantities.
Therefore phase angles of the measured amplitude and of the off-resonant vibration
have to be taken into account, and subtraction carried out vectorially. Although the off-
resonant vibration does not go through a marked change in the phase response, the
phase angle of the response in the resonant mode changes from a small angle to almost
m as it passes through the resonant frequency.

The dashed lines in Figs.29a) and 29b) show the amplitude and phase response of two
single closely spaced resonant modes. The full line shows the response when the two
individual modes are added together. The way in which the vectorial addition of the two
modes is carried out is illustrated in Fig.29¢). OB and OC are equal amplitudes on either
side of the resonant frequency w, of the first resonant mode (Fig.29a)). The phase
angles of these amplitudes relative to the force are —60° and -120° respectively, as
seen from Fig.29b). Thus OB and OC are drawn in Fig.29c) at -60° and —120° relative to
the force vector which is parallel to the Real Axis. The off-resonant vibration contribu-
tion OA from the second mode is assumed constant in amplitude and phase over the
frequency range wg to wc. Thus the amplitude of OA is plotted at an angle of —22° from
the Real Axis in Fig.29c) and added vectorially to OB and OC the amplitudes of the
resonant mode. The resultant vectors are OD and OE respectively, which are the
amplitudes at wg and wg of the total vibration as shown in Fig.29a).*

* It should be noted that the off-resonant vibration is assumed to be constant in amplitude and phase for
simplifying the explanation of the vector diagram of Fig.29c). The full line curve of Fig.29a) in fact takes into
account the amplitude and phase variation of the off-resonant vibration.
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Fig.29. The dashed lines in a) and b) show the amplitude and phase response of two
single closely spaced modes respectively. The full lines show the sum of the two
modes. ¢) shows vectorial addition of the off-resonant vibration from the
second mode to the first mode at frequencies wg and w.

It can thus be seen from the figure, that even if the off-resonant vibration is constant (in
amplitude and phase), it's contribution to the measured amplitude below and above
resonance will not be the same — giving rise to a non-symmetrical peak. Just as the
off-resonant vibration of the second mode distorts the first mode, the off-resonant
vibration of the first mode distorts the second resonant mode.

Another difficulty that arises in analyzing the amplitude frequency curves is when there
is heavy damping. Firstly, a heavily damped mode may be completely obscured from
some of the curves. Secondly, at the resonant frequency of a heavily damped mode, the
amplitude of the off-resonant vibration may be comparable to the vibration in the
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resonant mode. This can induce serious errors in the estimation of damping and the
principal modes.

The limitations of the Peak Amplitude method, when there are close resonances (which
may be further aggrevated by heavy damping) are summarized in the following:

1) A mode may be completely missed out
2) Errors may occur in estimation of damping and the principal modes

3) If the damping is very light experimental difficulties lie in making measurements
around the resonant frequencies.

To overcome these limitations, either the off-resonant vibration has to be extracted
from the response, or the structure must be excited in such a manner, so that only the
mode of interest is excited (i.e. the resonant mode must be isolated).

In the following, the method of Kennedy & Pancu [1] will be described in which the off-
resonant vibration is extracted, as well as multiple-shaker techniques which are re-
quired for isolating a principal mode.

5.2. KENNEDY AND PANCU METHOD

Instead of plotting the amplitude and phase response as a function of frequency, as
shown in Figs.7a) and 7b) for a single degree of freedom, the complex admittance can
be plotted in the Argand plane as shown in Fig.30a). The amplitude X; is plotted as the
vector OX; at angle 6, from the real axis, where 6, is the phase angle between the
exciting force and the displacement response at frequency w;. If the measured response
was of a single degree of freedom system, the curve obtained by plotting the amplitude
at the respective phase angles, would be as that shown in Fig.30a). The point Y which is
furthest from the real axis corresponds to the point of maximum amplitude (depending
on the type of damping), and also where the response is in quadrature with the exciting
force (i.e. the real component is zero). At this point where the frequency corresponds to
the natural frequency w,, the distance along the curve is maximum for equal increments
in frequency as can be seen from the crosses in Fig.30a).

In dealing with a multiple degree of freedom system, Kennedy and Pancu made the
assumption that for structures with small damping “the mode shapes, phase relations
between motions at various points, and couplings between the various degrees of
freedom will be unaffected” by the damping. (In terms of mathematics this means that
the damping matrix is diagonal, when referred to the principal coordinates). Under this
assumption the measured response of each mode as it passes through resonance will
lie on an arc of a circle such as that shown in Fig.30a), if the contribution form the off-
resonant modes is negligible. In practice, however, the contribution is not negligible, but
if it is somewhat constant over a range of frequencies, then the measured points would
be shifted relative to the origin as shown in Fig.30b). The greater the range of
frequency over which the contribution is constant, the greater will be the part of
the loop coinciding with the circle.

Whilst all the frequencies coincided at point Y in Fig.30a) for the single degree of
freedom, they spread out for the multi-degree of freedom system as shown by points
1-4 in Fig.30b).

Point1 is the frequency at which the maximum amplitude is obtained, (point furthest
from the origin),
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Fig.30.a) Complex admittance of a single degree of freedom plotted in the Argand plane
b) lllustration of various criteria for natural frequencies
¢) Response of the first three modes of a simple free-free beam plotted in the
Argand plane
d) Extraction of the off-resonant vibration from the total amplitude for determin-
ing the loss factor

Point2 is the frequency at which maximum spacing on the arc occurs for equal

frequency increments,

Point3 is the frequency at which the maximum quadrature component is obtained, and

Point4 is the frequency at which the force and response vectors are in quadrature (real
component zero).

In the past various authors have used different criteria 1-4 for defining the “resonance”
frequency.

Kennedy and Pancu have shown that by using criterion 2 the accuracy in obtaining the
natural frequency is less affected by the presence of other modes than using the peak
amplitude criterion. Also criterion 2 is more reliable in showing up the existence of
modes.
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To illustrate the method of Kennedy and Pancu for estimation of damping and the
principal modes, a simple free-free steel beam was excited at one end, and the
response measured at the same end.

Fig.30c) shows the response traced out of the first three modes of the steel beam in the
Argand plane. In Fig.30d) the loop corresponding to the first mode of vibration is
reproduced. In applying the Kennedy and Pancu method to the measured response, the
natural frequency is first of all determined according to criterion 2. The best circle is
then fitted to the arc near the natural frequency as shown by the dotted line in Fig.30d).

The point A (which would coincide with O but for the off-resonant vibration), corre-
sponds to the displaced origin and the vector OA represents the contribution from the
off-resonant modes. Thus the measured amplitude OB is composed of the contribution
from the off-resonant modes OA plus the true peak amplitude of the mode AB. By
determining the ratio of the true peak amplitudes (diameters of the circles) at various
points on the structure using the above method, the principal mode shape can be found
at this natural frequency. The procedure is then repeated for the other natural frequen-
cies for obtaining their mode shapes.

The experimental curves obtained are seen to be almost circular, indicating that the
contribution from the off-resonant modes is constant over a wide range of frequencies.
This is partly due to the fact that the off-resonant contributions are reasonably small
and partly because the natural frequencies are relatively widely spaced apart.

In the determination of the loss factor by the peak amplitude method, it was assumed
that the peak was generated solely by the vibration in the resonant mode. As it is
possible to separate the contribution of the off-resonant modes (vector OA) and the
peak amplitude vibration (vector AB) from the total vibration (vector OB) by the
Kennedy and Pancu method, a better estimate of the loss factor can be made.

In Fig.30d) the diameter CD is drawn parallel to the real axis. It can be seen that relative
to the new displaced origin A, the amplitudes AD and AC are 1/)2 the amplitude AB
(similar to the peak amplitude method), and the argument of these vectors are tan™
(£ 1). If wg and wp are the frequencies at C and D respectively, the loss factor in this
mode is determined from

n = (113)

In determining w¢ and wp the scale of w is required on the response locus.

The method can be seen to be analogous to the peak amplitude method, except for the
fact that the information is derived relative to the displaced origin and thus without the
contribution from the off-resonant modes.

Another construction which can be used for evaluation of the loss factor is shown in
Fig.31. The crosses show the experimental data obtained at equal frequency intervals
Aw. The best circle is fitted through the measured points and the centre of the circle is
established. By drawing the radii through the measured points the largest arc length for
given frequency increment can be determined, which would in fact correspond to the
largest angle « included between two adjacent radii. Thus the natural frequency wq
would be midway between w; and w, the frequencies at the two ends of the maximum
arc length. The loss factor can then be determined from
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Fig.31. Construction for evaluating the loss factor

(114)
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6. MULTIPLE EXCITER TECHNIQUES

Since a structure when excited vibrates in several modes simultaneously, and thus
causes difficulties in the analysis of the results, the unwanted modes have to be
somehow eliminated. This can be achieved for simple structures by placing the
exciters or pick-ups at nodal points of the unwanted modes, or by making use of the
symmetrical and anti-symmetrical properties of the mode shapes, (see Section 6.3.
Experimental Procedure). In a complex structure, however, this is not always possi-
ble, and systematic methods have to be used for exciting the structure with multiple
shakers and forcing them to vibrate in their Principal modes. However, this requires
rather sophisticated equipment both on the excitation side, as well as on the data
acquisition side, on account of the large number of pick-ups, necessary for determin-
ing the mode shapes. To facilitate understanding of the multi-shaker technique, it is
necessary to first describe the instrumentation required, and the features that have
been incorporated, that are obligatory for functioning of the test. (In Appendix D a
simple system with two shakers is described, which is ideal for education and demon-
stration purposes in laboratories to illustrate the principles).

6.1. INSTRUMENTATION FOR EXCITATION

Fig.32 shows an instrumentation set-up for testing of large structures using multiple
shakers. The system is such, that it can be readily expanded to incorporate any
number of shakers and accelerometer channels. All the equipment below the structure
constitutes the excitation part of the system, while the instrumentation above the
structure is used for data acquisition and further processing and analysis of the
results.

For sinusoidal excitation of the structure, the principle of operation of this set-up is
basically the same as that of Fig.22. However, on account of the multiplicity of shakers
and accelerometers, automatic control of the system is imperative, although manual
operation is possible. This can be achieved by the Digital System Controller, which
could be, for example, a desk-top calculator having sufficient memory and speed
commensurate with the sophistication of the analysis software.

The fundamental requirement on the excitation side is the accurate control of the
amplitude and phase of the force, applied by each shaker to the test structure at a
single frequency. Either a Precision Generator Type 5819 or the sinusoidal generator
built-in the Dual Channel Signal Analyzer Type 2032 or 2034, can be used to feed the
signal to the shakers, via a power amplifier and a Phase & Amplitude Controller.
Whilst the latter controls the voltage input, and thus the force output from each
shaker, via the IEC/IEEE Interface, monitoring of the forces into the structure is
carried out by force transducers mounted between each shaker and the test structure.

On the data acquisition side, the acceleration signals have to be measured at several
points on the structure, and conditioned, before they are displayed on the Multiplexer
Type 5797 as Lissajous figures. The Multiplier Type 5795 extracts the Real and the
Imaginary components of the acceleration signals, while the Control Unit Type 5794
digitizes these signals, and controls the Group Selectors Type 5820 for out-scanning
of the system.
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For wideband excitation of the structure using a single shaker, the signal from the
force transducer of the corresponding shaker is fed to channel A of the Dual Channel
Signal Analyzer Type 2032 or 2034, and the total amplitude output from the Multiplier
5795 is fed to channel B. The accelerometer channel for this output is selected by the
Digital System Controller via the Control Unit 5794.

For techniques involving wideband excitation of the structure using multiple shakers,
additional hardware is required (not shown in Fig.32). In the following the individual
instruments will be described and the essential features which are incorporated in
them.

6.1.1. Precision Generator Type 5819

Large metal structures have relatively low damping and often very close natural
frequencies. Thus stable excitation of these modes places stringent requirements on
the generator, which should have the following features:

a) Low distortion as harmonic components may excite undesired resonances.

b) High frequency resolution and stability because of the narrow resonant bandwidths
of the structure.

c) Low phase jitter to avoid side bands around the excitation frequency.

The Precision Generator Type 5819 operating on the synthesizer principle has a
frequency resolution of 2mHz and fulfils the above requirements. The frequency range
covered is 1,000 — 9999,9998 Hz. The sweep rate of the Generator can be chosen
between 0,00100 — 100 Hz/s or oct/min.

Facility for compressor (servo) loop is available as an option for keeping a constant
level excitation if desired. Both frequency and level control can be input digitally or
adjusted manually.

The Precision Generator outputs a sine and cosine voltage at the same frequency,
both of which are fed to the Amplitude and Phase Adjustment Units types WB 0169.
The cosine voltage is used as the force reference. Both the voltages are also fed to the:
Multiplier Type 5795 to be multiplied with the selected acceleration signal for produc-
ing the in-phase and quadrature components of the acceleration output.

Frequency marking signal for the X-Y Recorder type 2308 is available from the
Generator. This is especially useful in locating the maximum spacing for equal fre-
quency intervals on the Nyquist plot for the determination of natural frequencies by
the Kennedy and Pancu method. It was shown above that in order to excite a principal
mode, the force distribution has to be found for which the acceleration at all points on
the structure is in quadrature with the force input. The real part of the acceleration
signal at a selected point can be fed from the Multiplier Type 5795 to the automatic
frequency control of the Generator. By maintaining the real part zero, the Generator
achieves the quadrature relationship while the correct force distribution is found
manually or automatically.

6.1.2. Dual Channel Signal Analyzer Type 2032/2034

Instead of the Precision Generator Type 5819, the sine wave generator built-in the
Dual Channel Analyzer Type 2032 or 2034 can also be used. The frequency range



covered by the generator is 15mHz to 25,6 kHz, with a resolution of 15mHz. However,
the frequency sweep of the generator needs to be controlled by the desk-top calcula-
tor (Digital System Controller) via the IEC/IEEE interface.

The advantages of using the Dual Channel Analyzer, on the other hand, are that the
structure can also be excited using random noise, pseudo-random noise or an
impulse from the built-in generator. Furthermore, it is a zooming generator, so that
with a random or pseudo-random noise output, the noise spectrum is bandlimited to
match the selected frequency span, (see Ref [45]). Its 801 line resolution is of special
importance with respect to measurements on mechanical system for identifying the
modes. The analyzer can thus be used in conjunction with software packages devel-
oped by SMS (Structural Measurement Systems), for modal analysis of structures
using wide band excitation described in Section 7.4.3.

6.1.3. Power Amplifier Type 2707

If the sinusoidal voltage generated by the Precision Generator is to be used as a force
reference, it is necessary to eliminate any phase shift between the generator signal
and the excitation force. The power amplifier has been designed such, that when it
operates in the “high impedance” mode the output current is proportional to the input
voltage with negligible phase shift. Thus any variation in the exciter impedance will
have negligible effect on the coil current of the exciter. The phase shift between the
coil current and the force on the coil has also been minimised.

6.1.4. Phase and Amplitude Controller Type WB 0169

As it is now possible to adjust the force applied to the structure by means of the
current, a Phase and Amplitude Controller Type WB 0169 can be inserted between the
Generator and the Power Amplifier for each channel. By this instrument the amplitude
and phase of the force signal can be varied between 0° and 180° relative to the
reference signal of the generator, either manually or remotely. (Normally 0° or 180°
would be used for principal mode excitation).

6.1.5. Force Transducer Type 8200

A Force Transducer Type 8200 is placed between each vibration exciter and the
structure. The outputs of the force transducers are fed to the Digital System Controller
via a Group Selector and IEC/IEEE interface. It is thus possible to calibrate the system
by force transducers, so that the current constant of the shakers may be checked.The
force delivered by the vibration exciters can now be monitored.

6.2. INSTRUMENTATION FOR DATA ACQUISITION AND ANALYSIS
6.2.1. Accelerometer Types 4371 and Multiple Preamplifier Unit Type WB 0340

The use of unigain Accelerometers Types 4371 significantly simplifies simultaneous
monitoring of acceleration at several points on the structure. This is because switch-
ing of the accelerometers does not lead to loss of calibration. Each Multiple Preampli-
fier Unit Type WB 0340 contains ten Charge Preamplifiers Types 2634 with their power
supplies.

65



66

6.2.2. Group Selector Type 5820

The outputs from the Multiple Preamplifier Units is fed to a Group Selector Type 5820
which can accept up to 100 channels. Nine other Group Selectors may be connected in
parallel as slaves, extending the number of channels to 1000. The 5820 divides the 100
channels into groups of ten, and outputs two groups at a time to the Multiplier Type
5795 via a Twenty Channel Amplifier Type 5541. Channel selection on the 5820 is
carried out either manually by three digit thumb-wheels or remotely. The least signifi-
cant digit selects the channel number that is to be output from the Multiplier 5795,
while the middle digit selects one of the ten groups to be output from the 5820. The
most significant digit selects one of the ten Group Selectors connected in parallel.

6.2.3. Twenty Channel Amplifier Type 5541

This unit amplifies the twenty signals from the Group Selector in steps of 0, + 20dB or
+40dB before feeding them to the Multiplier Type 5795.

6.2.4. Multiplier Type 5795

Each of the twenty input signals are here multiplied simultaneously by the sine and
cosine voltage signals from the Precision Generator and low pass filtered. Thus two
DC voltages proportional to the in-phase (real part) and quadrature component
(imaginary part) of each acceleration signal relative to the reference cosine voltage
signal of the Generator are produced, see Appendix D. The low pass filtering removes
the harmonics of the signals, if any, thus eliminating the need of a tracking filter. The
real and imaginary components of the ten acceleration signals at a time are fed
through a remote controlled multiplexer to the Control Unit Type 5794. While one
group of ten channels is being output, the second group of ten settles down and is
ready for output, the sequence being controlled by the Control Unit Type 5794. For
recording of the response curves in the Argand plane for the Kennedy and Pancu
method, the real and imaginary parts of the signals can also be fed to the X-Y
Recorder Type 2308. The total amplitude is also available as an output for the Peak
Amplitude method.

6.2.5. Control Unit Type 5794

Type 5794 controls the digital measuring system. Two A/D converters digitize the real
and the imaginary parts of the signal for feeding outputs to the Digital System
Controller via the IEC/IEEE interface. The digitized values of the real and imaginary
parts are also displayed on the front panel. The multiplex control logic through a
microprocessor controls the Group Selector for out-scanning of the system. When a
“channel scan” is desired, for example, at a natural frequency for obtaining the mode
shapes, the real and imaginary parts of all the accelerometer signals are printed out in
succession on the Digital System Controller.

In the case of a “frequency scan”, the real and imaginary parts of the accelerometer
signal selected on the Control Unit will be printed out against frequency at read-out
intervals set by the Controller.



6.2.6. Multiplexer Unit Type 5797

The Multiplexer Unit accepts twenty accelerometer signals chosen from the Group
Selector by means of a pin-board arrangement. The signals are converted to oscillo-
scope levels, lowpass filtered, and fed to the Y input of a twenty channel oscilloscope
for displaying Lissajous figures. It is well known [26], that if two signals of equal
amplitude are fed to the X and Y input of the oscilloscope, the Lissajous figures
displayed will be as shown in Fig.33, for phase angles of 0°, 45°, 90°, 135° and 180°
between the two signals.

/OO0 N

0° 45° 90 135 180° 821396

Fig.33. Lissajous figures for phase angles of 0°, 45°, 90°, 135° and 180° between two
signals of equal amplitude

Thus, if the cosine voltage, which is in phase with the force signal, is fed from the
Precision Generator Type 5819 (or the Dual Channel Analyzer) to the X input of the
oscilloscope, a circle would be displayed when the principal mode was excited on
account of the quadrature relationship between force and acceleration. However,
such a display is rather inconvenient in establishing exactly if the quadrature relation-
ship is fulfilled. If, instead, the sine voltage from the Generator via the Multiplier is fed
to the X input of the oscilloscope, straight line Lissajous figures would be displayed
when the quadrature relationship was satisfied.

6.3. EXPERIMENTAL PROCEDURE

Before describing the experimental procedure, it is necessary to illustrate in practical
terms the theoretical considerations for multiple shaker excitation, laid down by
Freeijs de Veubeke and Bishop & Gladwell [23, 8] and which is briefly described in the
theoretical Section 3.4.2.

In words it can be stated, that if a structure is proportionally damped, it can be excited
at any frequency by a particular set of forces which are in phase or anti-phase with
each other (mono-phase), such that the measured responses at all points are all in
phase (or anti-phase), and that the common phase lag (termed characteristic phase
lag) between the force and the response is unique at this frequency. Furthermore, at
this frequency there are as many characteristic phase lags with their associated
linearly independent force distribution, as there are degrees of freedom in the struc-
ture. The structure when excited in this manner for a particular ratio of forces will
vibrate in the principal mode, and thus as a single degree of freedom system.

If the structure is non-proportionally damped, the structure can be excited in its
principal mode, only at the corresponding natural frequency by a set of mono-phase
forces. In this case the response will be in quadrature with the forces at all points on
the structure.

If the structure has n degrees of freedom, n number of shakers are required ideally to
isolate a mode. To exemplify this statement, consider the mode shapes of the first
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Fig.34. Positioning of shakers to excite the third mode of a free-free beam

three degrees of freedom of a free-free beam shown in Fig.34. It can be seen, that in
order to excite the third mode only, three shakers in phase would be required, one at
each of the points A, B and C. If only two shakers with equal force amplitudes were
used in phase at A and B, the second mode could be eliminated, as points A and B
move in anti-phase, however, the first mode would be excited together with the third
one. Again, if only two shakers were used in phase at A and C, the first mode could be
eliminated, as points A and C move in anti-phase, however, the second mode could
not be eliminated.

From this example, it can be appreciated how the symmetrical and anti-symmetrical
properties of the mode shapes can be used to advantage, for judicious positioning of
the shakers. In complex structures, however, this is not always possible. Furthermore,
as continuous structures have infinite number of degrees of freedom, infinite number
of shakers would be required. In practice, obviously a limited humber of shakers are
used, such that only the mode of interest is dominantly excited in a particular
frequency range.

As mentioned in the Introduction, the testing of large structures is carried out in two
stages. In the first step the number of modes and their natural frequencies are roughly
established using single shaker sweeps, by either plotting the peak amplitude or the
quadrature component as a function of frequency, or preferably using the complex
plot (polar plot) and using the Kennedy and Pancu method. The response should be
monitored at several points to ensure that none of the modes is missed out in the
frequency range of interest. Once the existence of a mode has been established, the
second step involves isolation (tuning) of the mode using multiple shakers. The
theoretical requirements for multi-shaker excitation has been excellently interpreted
in practical terms for carrying out the test by Taylor et al in Ref.[6] and is as follows.
The test is started using a single shaker (placed preferably at an anti-node of the
mode to be excited) with an arbitrary force, and the response from an accelerometer
placed at the same shaker (or an anti-node) is fed back to the generator. The natural
frequency of the mode to be examined is now found by adjusting the frequency of the
generator, and observing the relevant Lissajous figure on the oscilloscope until it
becomes a straight line, indicating that a quadrature relationship between the exciting
force and the response is established. The automatic frequency control loop is now
closed so that subsequent frequency adjustment is automatic. With the first shaker
operating on automatic frequency control, the force level on the second shaker is
adjusted on its power amplifier, until the quadrature relationship for it is established
on its Lissajous figure. The force level now is similarly adjusted on the third shaker,



which may, however, cause a phase difference on the Lissajous figure of the second
shaker. Thus the force levels on the second and third shakers must be systematically
adjusted. When force levels on more shakers are brought into play they would have ef-
fects on each others phase response. Thus iterative adjustment of force levels on the
shakers is generally necessary to minimize the phase error on the Lissajous figures of
all the shakers.

It will be found that as more and more forces are applied and adjusted, the more
uniform in phase are the various points on the structure, and the responses in
quadrature with the forces. Furthermore, the frequency at which the generator was
initially set when the force to the first shaker was applied, would have drifted and
approached the true natural frequency of the mode being excited. These trends give
definite indications that a principal mode is being approached.

When the correct force distribution has been determined, it may be found that the
overall force input is too low for accurate response measurements. This occurs if the
force level chosen on the first exciter is incorrect. This can be overcome by increasing
the voltage output from the generator, so that the forces at all the shakers are
increased equally, maintaining the same force distribution. Furthermore, this feature
is also useful in checking the amplitude linearity of the structure, by gradually increas-
ing the overall force level and observing the response. Another situation which can
arise if the force level chosen on the first exciter is incorrect, is that one or more of the
forces at the other shakers may be at a maximum, before the correct force distribu-
tion is found. In this case the force at the first shaker has to be reduced and the force
adjustment procedure repeated.

Once the correct force distribution has been obtained, such that the quadrature
relationships have been established at the monitoring points, the rest of the structure
should be examined for mono-phase response. If the phase scatter around the
structure is unacceptably large, repositioning of the shakers and/or monitoring points
of responses should be considered. If for some reason, for example, non-linearity in
the structure, it is impossible to find the correct force distribution that gives a mono-
phase response, it may be necessary to accept some phase error at a couple of
excitation points. It should be remembered, that unless the automatic frequency
control loop is offset, no phase error can occur at the first exciter. Thus if minimum er-
ror is sought, the possibility of having to accept some phase error at the first exciter
should not be overlooked.

When there are fairly closely spaced resonances, care has to be exercised, as pointed
out in Ref.[6] by the followig illustrative example. Fig.35 shows a polar plot obtained at
the attachment point of shaker 1, used for the automatic frequency control loop. As
can be seen, there are two modes with natural frequencies w, and w,. If we wish to iso-
late mode 1, an arbitrary force would be selected at shaker 1 and the frequency of the
generator would be adjusted to w;. If now the automatic frequency control loop was
closed, the frequency of the generator would vary until the response was in quadra-
ture with the force, i.e. the frequency at point P would be attained. When the forces on
other shakers are brought into play the system will most likely end up exciting the
mode of natural frequency w,. Thus it may be essential to determine approximately
the correct force distribution for mode 1, before the automatic frequency control loop
is closed. This situation can be avoided by having the shaker with the automatic
frequency control loop mounted at a nodal point of mode 2.

With the correct force distribution established, a sinusoidal frequency sweep around
the natural frequency is very useful in revealing the characteristics of the mode. If the
damping is proportional (non-coupling) and hysteretic, the complex response in the
Argand plane would be a perfect circle, centered on the imaginary axis with its highest
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Fig.35. Polar plot of two closely spaced modes obtained at the attachment point of
shaker 1

point passing through the origin. From this polar plot the modal damping as well as
the mode shape component could be determined using the Kennedy and Pancu
method. If the damping is proportional and viscous, the complex response would still
be nearly circular. Even if the damping is non-proportional (i.e. damping couples the
modes), the complex response plot is nevertheless useful in establishing the presence
of a true mode. However, damping coupling of closely spaced modes causes devi-
ation from circular shape of the polar plots, which may be difficult to interpret. It
should be remembered that for non-proportional damping, according to the charac-
teristic phase lag theory, the principal mode can be tuned only at the natural
frequency, with the response in quadrature with the excitation force.

If the mode is isolated, and all the forces at the shakers are suddenly stopped (for
example by setting the generator on standby), the resulting decay curves will not
exhibit “beating” and will be of a single frequency (the natural frequency of the mode).
The modal damping could then also be evaluated from the logarithmic decrement of
the decay curves.

6.4. PRACTICAL DETAILS
6.4.1. Exciter Positions

Some prior knowledge of the mode shapes, obtained either from theoretical calcula-
tions or from experience of similar structures, will often expedite judicious positioning



of the shakers around the structure. Since nodal regions should be avoided, the
extremities of free-free structures is generally a good choice. For exciting the sym-
metrical modes, positioning the shakers on the axis of symmetry is advisable, and
conversely should be avoided for anti-symmetrical modes.

Since the aim of multiple shaker excitation is not only to excite the mode of interest,
but also to cancel the contribution from the off-resonant modes, it should be remem-
bered that the off-resonant component cannot be cancelled, if all the shakers are
placed at the nodes of that unwanted mode. (The unwanted mode can nevertheless be
excited due to damping coupling between it and the other modes).

6.4.2. Response Monitoring points for Force Control

As mentioned earlier, it is not always essential to have the response monitoring points
for adjusting the forces, to be coincident with the corresponding shaker positions. The
monitoring points should ideally be chosen in the region of anti-nodes, and in addition,
where the component from off-resonant modes are initially large. These positions will
therefore be sensitive to the mode being excited, as well as to the unwanted modes
whose contribution could thus be reduced to a minimum.

6.4.3. Criterion for Modal Purity

From theory it is known, that if the structure is excited in a pure mode, the response at
all points on the structure would be in quadrature with the forces. Therefore the
minimum phase scatter that could be measured, would be the maximum phase error
of the equipment. Unfortunately, structures are never ideal in practice, and therefore a
realistic criterion for modal purity that is often used, is a phase scatter no greater than
+ 10° around the quadrature components.

6.5. MEASUREMENT RESULTS

To illustrate isolation of the modes using multiple shakers, experiments were carried
out on a free-free beam shown in Fig.36a). Fig.36b) shows the real and imaginary
components of the response measured at point 1, as a function of frequency, when the
beam is excited by a single shaker at the same point. From the response it can be
seen that there are two resonances at frequencies 20,5Hz and 47,8 Hz, corresponding
to the first and second modes respectively. These resonances are indicated by the
frequencies of the minima of the imaginary component. The real components can be
seen to be practically zero at these frequencies. The peaks and notches below 10 Hz
are caused by the low frequency suspension of the beam.

Fig.36¢) shows the response at point 1 when the beam is excited by two shakers in
phase positioned at points 1 and 2. It can be seen that the first mode is excited while
the second mode is eliminated. Fig.36d) shows the response at point 3 for the same
excitation conditions. The response curves are seen to be inverted i.e. a maximum
occurs now for the imaginary component at the same frequency. The reason is that
point 3 moves in anti-phase with point 1, as can be seen from the first mode shape.
The fact that points 1 and 3 are moving in anti-phase, will also be indicated on their
Lissajous figures. This is because the response at point 1 being 90° out of phase with
the force signal at resonance, will display a line at 45° on the Lissajous figure, while
the response at point 3 being 270° (-90°) out of phase with the force, will display a line
at 135° from the horizontal on its Lissajous figure. This is a very useful feature in

pointing out which points move in phase and which in anti-phase relative to each other
at resonance.
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conditions



Fig.36e) shows the response measured at Point 1 when the beam is excited by two
shakers in anti-phase positioned at points 1 and 2. It can be seen that the second
mode is excited, while the first mode is eliminated. Fig.36f) shows the response
measured at point 3 for the same excitation conditions. Although mode 2 is excited, it
can be seen that there is no response, simply because point 3 is a nodal point for the
second mode. (The amplitude scales for Figs.36e) and f) are different to those of
Figs.36b), c), and d).)

Fig.37a) shows the polar plot of response measured at point 1, when the beam is
excited by a single shaker at the same point. With the beam excited by four shakers at
points 1, 2, 4, and 5, and the forces adjusted to isolate the first mode, the polar plot re-
sponse measured at point 1 is as shown in Fig.37b), when the frequency is scanned
through the first resonance. Figs.37c) and d) show the polar plots similarly obtained
for the second and the third modes respectively. The symmetry of the polar plots
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Fig.37. Polar plots of response measured at point 1 on a free-free beam excited using
a single shaker, and using four shakers to isolate the first, second and the

third modes
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around the imaginary axis, with the highest point passing through the origin, gives a
clear indication of the modes being isolated, when excited by the appropriated forces
using multiple shakers. It should be noted that the results of Figs.36 and 37 can be ob-
tained using the simple system described in Appendix D. However, as only two
shakers can be used to isolate the modes with this simple system, the polar plots will
not be as symmetrical and circular as those shown in Fig.37. Nevertheless, this simple
system is ideal for education, in illustrating the principles behind the multiple shaker
excitation and the Kennedy and Pancu techniques, as well as for less demanding
practical applications.

Fig.38 shows the first three mode shapes of the beam when isolated using four
shakers. Since the beam is uniform, the mode shapes theoretically should be symmet-
rical, which are confirmed by the practical results. However, compare the third mode
shape with that shown in Fig.24 obtained using a single shaker.
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Fig.38. The first, second and the third mode shapes of a free-free beam obtained
using four shakers with appropriated forces



7. AUTOMATIC FORCE APPROPRIATION TECHNIQUES

Under the Experimental Procedure section it was shown, that for isolating or tuning a
mode using multi-shaker technique, it was necessary to adjust the mono-phase forces
on the individual shakers at the natural frequency, until the acceleration response at
all the mesurement points was in quadrature with the excitation forces. Thus some
form of iterative procedure for force appropriation is required to optimize the phase
coherence of the responses. Manual iterative procedures are carried out whilst
observing some form of phase display. Generally, use of Lissajous figures is quite
convenient, as closing of the ellipses at all points implies not only proper force
appropriation, but also excitation at the resonant frequency.

Difficulties, however, arise when a large number of shakers have to be adjusted to
isolate modes in frequency ranges of high modal density. Therefore to automate the
force appropriation task, different methods have been put forward [16, 25, 29, 30]. In
the following Deck’s method [16] will be briefly touched upon, and Asher’s method [7],
which has been discussed by several authors, will be described in some detail.

7.1. DECK’S METHOD

For appropriating the forces, Deck proposes to iterate with multiple shakers to fulfil
the criterion

m
R=S I|Asing] (115)
i=1

where A, is the velocity amplitude response at point i.

f; is the phase angle between the velocity and force at point i, and n is the total number
of measurement points.

Thus the function R is a minimum (and equal to zero) if all the velocity responses are in
phase (acceleration responses are in quadrature) with the excitation forces — the
conditions for an isolated mode. In his method, the amplitude of each shaker is
adjusted in turn until R reaches a minimum. He also presents arguments for the
convergence of this procedure and shows how adjustment of each force requires only
two changes in the force.

Deck furthermore defines

m -
2. |A;sing;|
=
z-— (116)
m
2. |A;cos ;|

i=1
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as a measure of modal isolation and resonance condition. The procedure for his
method is as follows. The test is initiated by a few frequency sweeps to establish the
natural frequencies. The structure is then excited at one of the estimated natural
frequencies by a judiciously chosen initial force distribution. Each force is adjusted in
turn (keeping the others fixed) by a two point evaluation of R. When each force is thus
adjusted to minimize R, the excitation frequency is tuned to minimize Z to account for
small changes in resonant frequency due to non-linear effects. Depending on the value
of Z, the procedure may be repeated if desired, starting with the first force. The end
result should give the correct force distribution for this mode. The whole procedure is
of course repeated for the rest of the modes. Implementation of this algorithm based
on a computer system is described by Deck in Ref. [16].

7.2. ASHER’S METHOD

Asher [7], apprehensive of other methods available at the time (1958) being capable of
separating closely spaced modes, proposed a quantitative method, which detects the
natural frequencies as well as provides the force ratios necessary for multiple-shaker
tuning, using only experimental transfer admittance data as input.

Although Asher was unable to apply his method successfully on practical structures
due to equipment limitations, his method was nevertheless considered to be promis-
ing and was discussed extensively by Bishop & Gladwell [8], (1961). Since then
simulated modal testing has been carried out by Craig & Su [9], (1974) and also by
Hallauer and Stafford [10], (1978) on theoretical five and eleven degrees of freedom
models. Use of Asher’s method on practical structures have been attempted and
described in Refs. [11, 12, 13], (1976). Extensions of Asher’s method have also been
suggested in Refs. [15, 31, 36, 42].

To illustrate the method suggested by Asher consider eq. (89) which describes the
harmonic motion of an n degree of freedom linear, damped system i.e.

[m] {X} +[clw)] {x} +[k]{x} = {F} sin wt (117)

The damping is considered to be rather general (see Ref. [10]), and is therefore
represented by an arbitrarily frequency-dependent term

[clw)] =[c] + 1w [d] (118)

where [c(w)] encompasses any combination of the standard viscous and hysteretic
types, given by [c] and [d] matrices respectively. Furthermore, in the general case,
damping is non-proportional so that the damping matrix couples the otherwise uncou-
pled normal equations of motion.

The system is assumed to be excited by a set of mono-phase forces i.e. all the forces

are either 0° or 180° out of phase with each other. Introducing complex notation
(complex quantities are denoted by a bar) in eq. (117) yields

[m]{a) + ] {G}t + [{u} = {F}eiot (119)

where

{x} = 1m{g} (120)



Substituting the trial solution
{a} = {0} eier (121)
in eq. (119) yields
—w2[m]{u} + o [c] {0} + [ {v} = {F (122)
i.e. [k} — w2[m] + jwlc(w)]]{T} = {F} (123)
Eq. (123) may be written as
{u}

where [E]

[8] {F} (124)
[[k] - w2 [m] + jwlc(w)] ' (125)

1

is called the complex admittance matrix. It can be written in its real and imaginary
parts as

[B]= [87+i[B] (126)

where [B'] is the real part of [B]
and [B”] is the imaginary part of [B]

The individual terms of the admittance matrix, the admittance functions, are the
dynamic equivalent of the static flexibility influence coefficients. It has been shown in
Appendix E, that the elements in each column of matrix [B] represents the complex
displacement response (per force) at the different points on the structure at a single
frequency, when the structure is excited at any one point. In other words the element
5” represents the complex displacement at point i when the structure is excited at
point j. (Thus the elements of the principal diagonal, (b;; when i = j) represents the
point admittances, while the off-diagonal elements represent the cross or transfer
admittances).

In the section on Forced Normal Modes of Damped Systems it was shown, that by
using the trial solution {x} = {¢} sin (ot - ), eq. (117) can be written as

cos 0 [[k] —w? [m]] {y} + wsin6 [clw)] (¥}

{F! (127)

sin 0 [[k] — w2 [m]]{d/} —wecosf [clw)] {Y!

{0} (128)

For the special case when ( = 90°, i.e. all the displacements are in quadrature
with the excitation forces, the equations reduce to

wlclw] (g = (T} (129)
[[k] = w2 [m]] (¥} = {0} (130)

The only solution to eq. (130) is the normal mode solution (see eg.(31)), implying
that the excitation frequency must be a natural freqency, and that the character-
istic phase lag mode shape must be the principal mode shape ({{;} = {¢;}) at that
frequency. Furthermore, to establish this form of quadrature response, the force
distribution required must be that given by {I';} from eq. (129).
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It can thus be seen, that even if the damping is non-proportional, the Principal
mode can be excited, as long as all the displacement responses are in quadrature
with the excitation forces. However, this can only occur at the undamped natural
frequency.

Substituting eq. (126) in eq. (124) yields
{u} = [811{F} + j[B"]1{F} (131)

Interpretation of the above statement when applied to eq. (131) implies, that when the
displacement response is in quadrature with the excitation force, it is required that

[B'] {F} = {0} (132)

since the real parts of the displacement responses are zero. Eq. (132) represents a set
of linear homogeneous equations which have a non-trivial solution if, and only if

Bl =0 (133)

(giving a set of eigenvalues which are the undamped natural frequencies). As a
corollary to this statement Craig & Su [9] concluded that “The response of a system
will be in quadrature with the excitation if, and only if, the determinant of the real part
of its complex admittance matrix [B’] is equal to zero”. The corresponding force ratios
required to isolate the modes will be given by eq. (132) using the eigenvalues obtained
from eq. (133).

The theoretical results given by egs. (132) and (133) were first stated by Asher [7]. His
method can be described with reference to these equations in the context of an
idealized modal test on a discrete n degree of freedom linear structure with linear
damping. The test is started by measuring the (n x n) complex admittance matrix over
the frequency range of interest. This can be carried out by exciting and measuring the
response at each degree of freedom, either using sinusoidal sweep, or broadband
excitation, see Ref. [13, 32]. The real part of the admittance matrix, [B’] is extracted,
and the determinant of [B’] is plotted as a function of frequency. It can be seen from
eq. (133) that this determinant is exactly zero at an undamped natural frequency. Thus
n zero-crossings will be found on the frequency axis, and the frequencies at which
they occur, are the undamped natural frequencies, even though damping is present.
The admittance matrix is again measured, but this time only at the undamped natural
frequencies just found [B(w)]. The force ratios necessary to excite these modes
individually are then calculated from eq. (132). (Any one column of the adjoint matrix
[@'(wo)] represents the solution to eq. (132), i.e. it is identical to the force ratios (to
within constant multiples)). Using these force ratios, the individual modes are tuned
exactly for a multiple-shaker sine dwell test. For the i™ mode the shakers are set to
produce the force ratios

{F;} sin w;t (134)
and the displacement response is measured to be
{x} = {;} sin (w;t — 7/2) (135)

where {¢,} is the principal mode shape for the i"" undamped natural frequency, even
though there is damping in the system. Generally a narrow-band sweep about w, with
fixed {F;} is more useful than a dwell, as it permits the plotting of Nyquist graphs from
which mode shapes and modal damping values can be calculated and modal purity
evaluated.



From the above, it can be seen that Asher’s method, in principle, can be used to
determine the undamped natural frequencies, and to isolate the corresponding indi-
vidual modes of an idealized discrete structure with n degrees of freedom and linear
damping, using only experimental data as input.

Application of Asher’s method to real hardware, however, is more involved, as
structures are continuous in character and thus have an infinite number of degrees of
freedom. As shakers and accelerometers can be positioned at only a few number of
locations on the structure, the measurement of [B'] (the real part of the complex
admittance matrix) using single shaker sweeps is not rigorously possible. Thus if an n
degree of freedom system is excited by p number of shakers, it is feasible to measure
only a (p x p) incomplete complex admittance matrix [B.], where p <n. As it is not
possible to satisfy the exact equations (132) and (133), the best that can be done is to
solve analogous equations

[B,] {F,} = {O} (136)
B, = 0 (137)

where [B’«] is the corresponding sub-matrix of [B’], and {F.} is the (p x 1) vector of
the force amplitudes of the corresponding shaker locations. The solution of eq. (137)
yields a set of frequencies w. which are called “test natural frequencies” in Ref.[9], as
they may not be the true natural frequencies which satisfy eq. (133). Furthermore, if
the force ratios are chosen to satisfy eq. (136), the displacement response at the p
shaker locations will be in quadrature with the force. However, the response at the
other (n — p) locations, may or may not be in quadrature.

In view of the simulation study results given in Ref.[10], Hallauer and Stafford con-
clude, that “the use of eqgs. (136) and (137) can lead to the following possible conse-
quences, listed in order of decreasing desirability:

1. a zero of det [B'«] may occur close to but not exactly at a natural frequency, and
the vector {F.} will effectively tune the corresponding mode,

2. a zero of det [B'«] may occur close to a natural frequency, but the vector {F.} will
not adequately isolate the mode from interfering modes,

3. a zero of det [B’+] may be totally unrelated to any of the natural frequencies;
4. det [B’«] may have no zero in the vicinity of a natural frequency.”

The quoted references discuss various methods for the elimination of spurious fre-
quencies, and note that shaker locations play an important part in determining the
success of the method. It may be necessary to move the shakers around and repeat
the test.

Although there is no rigorous mathematical justification to propose that eqs. (136) and
(137) will yield accurate natural frequencies and the corresponding force distributions,
these equations seem to give surprisingly good results. The physical explanation for
this success offered by Hallauer, is that while the p degrees of freedom are con-
strained to respond exactly in quadrature phase with the p forces, the (n — p) unforced
degrees of freedom having significant modal energy will “cooperate” by responding
nearly in quadrature phase with the forces, if w+ is close to a natural frequency, and if
the p shakers are positioned appropriately to tune the mode. In this case the entire
structure will vibrate very closely to the true principal mode.
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7.3. USE OF ASHER’S METHOD ON ANALYTICAL MODELS
7.3.1. Numerical Simulation Studies

Simulation studies carried out by Hallauer and Stafford [10] on mathematical models
will be described in the following to illustrate the effectiveness of Asher’s method. As
the parameters of a mathematical structural model are known precisely, and can also
be designed to produce desired characteristics (such as high modal density), absolute
values are available against which the simulated test results can be compared. Further-
more, they also aid in pin-pointing the specific causes for failures of the test method.
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